Elevated Plasma Soluble ST2 Levels are Associated With Neuronal Injury and Neurocognitive Impairment in Children With Cerebral Malaria

Main Article Content

Elizabeth Fernander
Pontian Adogamhe
Dibyadyuti Datta
Caitlin Bond
Yi Zhao
Paul Bangirana
Andrea L. Conroy
Robert O. Opoka
Chandy John


Background: Murine experimental cerebral malaria studies suggest both protective and deleterious central nervous system effects from alterations in the interleukin-33 (IL-33)/ST2 pathway. 

Methods: We assessed whether soluble ST2 (sST2) was associated with neuronal injury or cognitive impairment in a cohort of Ugandan children with cerebral malaria (CM, n=224) or severe malarial anemia (SMA, n=193). 

Results: Plasma concentrations of sST2 were higher in children with CM than in children with SMA or in asymptomatic community children. Cerebrospinal fluid (CSF) sST2 levels were elevated in children with CM compared with North American children. Elevated plasma and CSF ST2 levels in children with CM correlated with increased endothelial activation and increased plasma and CSF levels of tau, a marker of neuronal injury. In children with CM who were ≥5 years of age at the time of their malaria episode, but not in children <5 years of age, elevated risk factor-adjusted plasma levels of sST2 were associated with worse scores for overall cognitive ability and attention over a 2-year follow-up. 

Conclusions: The study findings suggest that sST2 may contribute to neuronal injury and long-term neurocognitive impairment in older children with CM.


Download data is not yet available.

Article Details



WHO. World malaria report 2021. Geneva: World Health Organization. 2021.

John CC, Bangirana P, Byarugaba J, Opoka RO, Idro R, Jurek AM, Wu B, Boivin MJ. Cerebral malaria in children is associated with long-term cognitive impairment. Pediatrics. 2008;122(1):e92-9. Epub 2008/06/11. doi: 10.1542/peds.2007-3709. PubMed PMID: 18541616; PMCID: PMC2607241.

Carter JA, Mung’ala-Odera V, Neville BG, Murira G, Mturi N, Musumba C, Newton CR. Persistent neurocognitive impairments associated with severe falciparum malaria in Kenyan children. J Neurol Neurosurg Psychiatry. 2005;76(4):476-81. Epub 2005/03/19. doi: 10.1136/jnnp.2004.043893. PubMed PMID: 15774431; PMCID: PMC1739592.

Idro R, Ndiritu M, Olola C, Neville B, Newton C. Neurological involvement in falciparum malaria in African children. Neuropediatrics. 2006;37.

Langfitt JT, McDermott M, Brim R, Mboma S, Potchen M, Kampondeni S, Seydel K, Semrud-Clikeman M, Taylor TE. Neurodevelopmental impairments 1 year after cerebral malaria. Pediatrics. 2019;143(2).

Bangirana P, Opoka RO, Boivin MJ, Idro R, Hodges JS, Romero RA, Shapiro E, John CC. Severe malarial anemia is associated with long-term neurocognitive impairment. Clin Infect Dis. 2014;59(3):336-44. Epub 2014/04/29. doi: 10.1093/cid/ciu293. PubMed PMID: 24771329; PMCID: PMC4155441.

Silamut K, Phu NH, Whitty C, Turner GDH, Louwrier K, Mai NTH, Simpson JA, Hien TT, White NJ. A quantitative analysis of the microvascular sequestration of malaria parasites in the human brain. American Journal of Pathology. 1999;155(2):395-410.

Dondorp AM, Pongponratn E, White NJ. Reduced microcirculatory flow in severe falciparum malaria: pathophysiology and electron-microscopic pathology. Acta Tropica. 2004;89(3):309-17.

Taylor TE, Fu WJ, Carr RA, Whitten RO, Mueller JS, Fosiko NG, Lewallen S, Liomba NG, Molyneux ME. Differentiating the pathologies of cerebral malaria by postmortem parasite counts. Nat Med. 2004;10(2):143-5. Epub 2004/01/28. doi: 10.1038/nm986. PubMed PMID: 14745442.

Armah H, Wiredu EK, Dodoo AK, Adjei AA, Tettey Y, Gyasi R. Cytokines and adhesion molecules expression in the brain in human cerebral malaria. International Journal of Environmental Research and Public Health. 2005;2(1):123-31.

Erdman LK, Dhabangi A, Musoke C, Conroy AL, Hawkes M, Higgins S, Rajwans N, Wolofsky KT, Streiner DL, Liles WC, Cserti-Gazdewich CM, Kain KC. Combinations of host biomarkers predict mortality among Ugandan children with severe malaria: a retrospective case-control study. PLoS One. 2011;6(2):e17440. Epub 2011/03/03. doi: 10.1371/journal.pone.0017440. PubMed PMID: 21364762; PMCID: PMC3045453.

Prakash D, Fesel C, Jain R, Cazenave P-A, Mishra GC, Pied S. Clusters of cytokines determine malaria severity in Plasmodium falciparum–infected patients from endemic areas of central India. J Infect Dis. 2006;194.

Wassmer SC, Taylor TE, Rathod PK, Mishra SK, Mohanty S, Arevalo-Herrera M, Duraisingh MT, Smith JD. Investigating the pathogenesis of severe malaria: A multidisciplinary and cross-geographical approach. Am J Trop Med Hyg. 2015;93(3 Suppl):42-56. Epub 2015/08/12. doi: 10.4269/ajtmh.14-0841. PubMed PMID: 26259939; PMCID: PMC4574273.

Luthi AU, Cullen SP, McNeela EA, Duriez PJ, Afonina IS, Sheridan C, Brumatti G, Taylor RC, Kersse K, Vandenabeele P, Lavelle EC, Martin SJ. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity. 2009;31(1):84-98. Epub 2009/06/30. doi: 10.1016/j.immuni.2009.05.007. PubMed PMID: 19559631.

Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, Zurawski G, Moshrefi M, Qin J, Li X, Gorman DM, Bazan JF, Kastelein RA. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23(5):479-90. Epub 2005/11/16. doi: 10.1016/j.immuni.2005.09.015. PubMed PMID: 16286016.

Hayakawa H, Hayakawa M, Kume A, Tominaga S. Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation. J Biol Chem. 2007;282(36):26369-80. Epub 2007/07/12. doi: 10.1074/jbc.M704916200. PubMed PMID: 17623648.

Mueller T, Dieplinger B, Gegenhuber A, Poelz W, Pacher R, Haltmayer M. Increased plasma concentrations of soluble ST2 are predictive for 1-year mortality in patients with acute destabilized heart failure. Clin Chem. 2008;54(4):752-6. Epub 2008/04/01. doi: 10.1373/clinchem.2007.096560. PubMed PMID: 18375488.

Broch K, Ueland T, Nymo SH, Kjekshus J, Hulthe J, Muntendam P, McMurray JJ, Wikstrand J, Cleland JG, Aukrust P, Gullestad L. Soluble ST2 is associated with adverse outcome in patients with heart failure of ischaemic aetiology. Eur J Heart Fail. 2012;14(3):268-77. Epub 2012/02/04. doi: 10.1093/eurjhf/hfs006. PubMed PMID: 22302661.

Wolcott Z, Batra A, Bevers MB, Sastre C, Khoury J, Sperling M, Meyer BC, Walsh KB, Adeoye O, Broderick JP, Kimberly WT. Soluble ST2 predicts outcome and hemorrhagic transformation after acute stroke. Ann Clin Transl Neurol. 2017;4(8):553-63. Epub 2017/08/16. doi: 10.1002/acn3.435. PubMed PMID: 28812045; PMCID: PMC5553222.

Korhonen P, Kanninen KM, Lehtonen S, Lemarchant S, Puttonen KA, Oksanen M, Dhungana H, Loppi S, Pollari E, Wojciechowski S, Kidin I, Garcia-Berrocoso T, Giralt D, Montaner J, Koistinaho J, Malm T. Immunomodulation by interleukin-33 is protective in stroke through modulation of inflammation. Brain Behav Immun. 2015;49:322-36. Epub 2015/06/27. doi: 10.1016/j.bbi.2015.06.013. PubMed PMID: 26111431.

Hoogerwerf JJ, Tanck MW, van Zoelen MA, Wittebole X, Laterre PF, van der Poll T. Soluble ST2 plasma concentrations predict mortality in severe sepsis. Intensive Care Med. 2010;36(4):630-7. Epub 2010/02/13. doi: 10.1007/s00134-010-1773-0. PubMed PMID: 20151106; PMCID: PMC2837188.

Krychtiuk KA, Stojkovic S, Lenz M, Brekalo M, Huber K, Wojta J, Heinz G, Demyanets S, Speidl WS. Predictive value of low interleukin-33 in critically ill patients. Cytokine. 2018;103:109-13. Epub 2017/10/05. doi: 10.1016/j.cyto.2017.09.017. PubMed PMID: 28974430.

Zeng Z, Hong X, Li Y, Chen W, Ye G, Li Y, Luo Y. Serum-soluble ST2 as a novel biomarker reflecting inflammatory status and illness severity in patients with COVID-19. Biomark Med. 2020;14(17):1619-29.

Sanchez-Marteles M, Rubio-Gracia J, Pena-Fresneda N, Garces-Horna V, Gracia-Tello B, Martinez-Lostao L, Crespo-Aznarez S, Perez-Calvo JI, Gimenez-Lopez I. Early measurement of blood sST2 Is a good predictor of death and poor outcomes in patients admitted for COVID-19 infection. J Clin Med. 2021;10(16). Epub 2021/08/28. doi: 10.3390/jcm10163534. PubMed PMID: 34441830; PMCID: PMC8396994.

Demyanets S, Konya V, Kastl SP, Kaun C, Rauscher S, Niessner A, Pentz R, Pfaffenberger S, Rychli K, Lemberger CE, de Martin R, Heinemann A, Huk I, Groger M, Maurer G, Huber K, Wojta J. Interleukin-33 induces expression of adhesion molecules and inflammatory activation in human endothelial cells and in human atherosclerotic plaques. Arterioscler Thromb Vasc Biol. 2011;31(9):2080-9. Epub 2011/07/09. doi: 10.1161/ATVBAHA.111.231431. PubMed PMID: 21737781.

Cao K, Liao X, Lu J, Yao S, Wu F, Zhu X, Shi D, Wen S, Liu L, Zhou H. IL-33/ST2 plays a critical role in endothelial cell activation and microglia-mediated neuroinflammation modulation. J Neuroinflammation. 2018;15(1):136. Epub 2018/05/08. doi: 10.1186/s12974-018-1169-6. PubMed PMID: 29728120; PMCID: PMC5935936.

Palomo J, Reverchon F, Piotet J, Besnard AG, Couturier-Maillard A, Maillet I, Tefit M, Erard F, Mazier D, Ryffel B, Quesniaux VF. Critical role of IL-33 receptor ST2 in experimental cerebral malaria development. Eur J Immunol. 2015;45(5):1354-65. Epub 2015/02/17. doi: 10.1002/eji.201445206. PubMed PMID: 25682948.

Reverchon F, Mortaud S, Sivoyon M, Maillet I, Laugeray A, Palomo J, Montecot C, Herzine A, Meme S, Meme W, Erard F, Ryffel B, Menuet A, Quesniaux VFJ. IL-33 receptor ST2 regulates the cognitive impairments associated with experimental cerebral malaria. PLoS Pathog. 2017;13(4):e1006322. Epub 2017/04/28. doi: 10.1371/journal.ppat.1006322. PubMed PMID: 28448579; PMCID: PMC5407765.

Besnard AG, Guabiraba R, Niedbala W, Palomo J, Reverchon F, Shaw TN, Couper KN, Ryffel B, Liew FY. IL-33-mediated protection against experimental cerebral malaria is linked to induction of type 2 innate lymphoid cells, M2 macrophages and regulatory T cells. PLoS Pathog. 2015;11(2):e1004607. Epub 2015/02/07. doi: 10.1371/journal.ppat.1004607. PubMed PMID: 25659095; PMCID: PMC4450060.

Strangward P, Haley MJ, Albornoz MG, Barrington J, Shaw T, Dookie R, Zeef L, Baker SM, Winter E, Tzeng TC, Golenbock DT, Cruickshank SM, Allan SM, Craig A, Liew FY, Brough D, Couper KN. Targeting the IL33-NLRP3 axis improves therapy for experimental cerebral malaria. Proc Natl Acad Sci U S A. 2018;115(28):7404-9. Epub 2018/06/30. doi: 10.1073/pnas.1801737115. PubMed PMID: 29954866; PMCID: PMC6048513.

Ketelaar ME, Nawijn MC, Shaw DE, Koppelman GH, Sayers I. The challenge of measuring IL-33 in serum using commercial ELISA: lessons from asthma. Clin Exp Allergy. 2016;46(6):884-7. Epub 2016/02/07. doi: 10.1111/cea.12718. PubMed PMID: 26850082.

Bangirana P, John CC, Idro R, Opoka RO, Byarugaba J, Jurek AM, Boivin MJ. Socioeconomic predictors of cognition in Ugandan children: implications for community interventions. PLoS One. 2009;4(11):e7898. Epub 2009/11/26. doi: 10.1371/journal.pone.0007898. PubMed PMID: 19936066; PMCID: PMC2774512.

Conroy AL, Opoka RO, Bangirana P, Idro R, Ssenkusu JM, Datta D, Hodges JS, Morgan C, John CC. Acute kidney injury is associated with impaired cognition and chronic kidney disease in a prospective cohort of children with severe malaria. BMC Med. 2019;17(1):98. Epub 2019/05/22. doi: 10.1186/s12916-019-1332-7. PubMed PMID: 31109328; PMCID: PMC6528242.

Kidney Disease: Improving Global Outcomes. KDIGO clinical practice guideline for acute kidney injury. Kidney International. 2012;2:19-36. doi: 10.1038/kisup.2011.32.

Boivin MJ, Bangirana P, Byarugaba J, Opoka RO, Idro R, Jurek AM, John CC. Cognitive impairment after cerebral malaria in children: a prospective study. Pediatrics. 2007;119(2):e360-6. Epub 2007/01/17. doi: 10.1542/peds.2006-2027. PubMed PMID: 17224457; PMCID: PMC2743741.

Mullen EM. Mullen Scales of Early Learning manual. American Guidance Service. 1995;ix.

Goldman DZ, Shapiro EG. Measurement of vigilance in 2-year-old children. Developmental Neuropsychology. 2004;25(3):227-50.

Jordan CM, Johnson AL, Hughes SJ, Shapiro EG. The Color Object Association Test (COAT): the development of a new measure of declarative memory for 18- to 36-month-old toddlers. Child Neuropsychol. 2008;14(1):21-41. Epub 2007/12/22. doi: 10.1080/09297040601100430. PubMed PMID: 18097800.

S KA, Kaufman NL. KABC-II: Kaufman Assessment Battery for Children. AGS Pub. 2004;2nd edn.

Leark RA, Greenberg. Lawrence M, Kindschi CL, D’upuy TR, Hughes SJ. Test of variables of attention continuous performance test. The TOVA Company, Los Alamitos, CA. 2007.

Seki T, Obata-Ninomiya K, Shimogawara-Furushima R, Arai T, Akao N, Hoshino T, Ohta N. IL-33/ST2 contributes to severe symptoms in Plasmodium chabaudi-infected BALB/c mice. Parasitol Int. 2018;67(1):64-9. Epub 2017/04/01. doi: 10.1016/j.parint.2017.03.008. PubMed PMID: 28359899.

Ayimba E, Hegewald J, Segbena AY, Gantin RG, Lechner CJ, Agosssou A, Banla M, Soboslay PT. Proinflammatory and regulatory cytokines and chemokines in infants with uncomplicated and severe Plasmodium falciparum malaria. Clin Exp Immunol. 2011;166(2):218-26. Epub 2011/10/12. doi: 10.1111/j.1365-2249.2011.04474.x. PubMed PMID: 21985368; PMCID: PMC3219897.

Datta D, Conroy AL, Castelluccio PF, Ssenkusu JM, Park GS, Opoka RO, Bangirana P, Idro R, Saykin AJ, John CC. Elevated cerebrospinal fluid tau protein concentrations on admission are associated with long-term neurologic and cognitive impairment in Ugandan children with cerebral malaria. Clin Infect Dis. 2019. Epub 2019/05/03. doi: 10.1093/cid/ciz325. PubMed PMID: 31044219.

Datta D, Bangirana P, Opoka RO, Conroy AL, Co K, Bond C, Zhao Y, Kawata K, Saykin AJ, John CC. Association of Plasma Tau With Mortality and Long-term Neurocognitive Impairment in Survivors of Pediatric Cerebral Malaria and Severe Malarial Anemia. JAMA Netw Open. 2021;4(12):e2138515. Epub 2021/12/11. doi: 10.1001/jamanetworkopen.2021.38515. PubMed PMID: 34889945; PMCID: PMC8665370.

Liu T, Clark RK, McDonnell PC, Young PR, White RF, Barone FC, Feuerstein GZ. Tumor Necrosis Factor-a Expression in Ischemic Neurons. Stroke. 1994;25(7).

Probert L, Akassoglou K, Pasparakis M, Kontogeorgos G, Kollias G. Spontaneous inflammatory demyelinating disease in transgenic mice showing central nervous system-specific expression of tumor necrosis factor a. Proc Natl Acad Sci U S A. 1995;92:11294-8.

Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Munch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481-7. Epub 2017/01/19. doi: 10.1038/nature21029. PubMed PMID: 28099414; PMCID: PMC5404890.

Chittiboina P, Ganta V, Monceaux CP, Scott LK, Nanda A, Lexander JS. Angiopoietins as promising biomarkers and potential therapeutic targets in brain injury. Pathophysiology. 2013;20(1):15-21.

Wichers JS, Tonkin-Hill G, Thye T, Krumkamp R, Kreuels B, Strauss J, von Thien H, Scholz JA, Smedegaard Hansson H, Weisel Jensen R, Turner L, Lorenz FR, Schollhorn A, Bruchhaus I, Tannich E, Fendel R, Otto TD, Lavstsen T, Gilberger TW, Duffy MF, Bachmann A. Common virulence gene expression in adult first-time infected malaria patients and severe cases. Elife. 2021;10. Epub 2021/04/29. doi: 10.7554/eLife.69040. PubMed PMID: 33908865; PMCID: PMC8102065.

Gerardin P, Rogier C, Ka AS, Jouvencel P, Brousse V, Imbert P. Prognostic value of thrombocytopenia in African children with falciparum malaria. Am J Trop Med Hyg. 2002;66(6):686-91.

Batte A, Starr MC, Schwaderer AL, Opoka RO, Namazzi R, Phelps Nishiguchi ES, Ssenkusu JM, John CC, Conroy AL. Methods to estimate baseline creatinine and define acute kidney injury in lean Ugandan children with severe malaria: a prospective cohort study. BMC Nephrol. 2020;21(1):417. Epub 2020/10/01. doi: 10.1186/s12882-020-02076-1. PubMed PMID: 32993548; PMCID: PMC7526147.

Dondorp AM, Lee SJ, Faiz MA, Mishra S, Price R, Tjitra E, Than M, Htut Y, Mohanty S, Yunus EB, Rahman R, Nosten F, Anstey NM, Day NP, White NJ. The relationship between age and the manifestations of and mortality associated with severe malaria. Clin Infect Dis. 2008;47(2):151-7. Epub 2008/06/07. doi: 10.1086/589287. PubMed PMID: 18533842.

von Seidlein L, Olaosebikan R, Hendriksen IC, Lee SJ, Adedoyin OT, Agbenyega T, Nguah SB, Bojang K, Deen JL, Evans J, Fanello CI, Gomes E, Pedro AJ, Kahabuka C, Karema C, Kivaya E, Maitland K, Mokuolu OA, Mtove G, Mwanga-Amumpaire J, Nadjm B, Nansumba M, Ngum WP, Onyamboko MA, Reyburn H, Sakulthaew T, Silamut K, Tshefu AK, Umulisa N, Gesase S, Day NP, White NJ, Dondorp AM. Predicting the clinical outcome of severe falciparum malaria in african children: findings from a large randomized trial. Clin Infect Dis. 2012;54(8):1080-90. Epub 2012/03/14. doi: 10.1093/cid/cis034. PubMed PMID: 22412067; PMCID: PMC3309889.

Tung YC, Chang CH, Chen YC, Chu PH. Combined biomarker analysis for risk of acute kidney injury in patients with ST-segment elevation myocardial infarction. PLoS One. 2015;10(4):e0125282. Epub 2015/04/09. doi: 10.1371/journal.pone.0125282. PubMed PMID: 25853556; PMCID: PMC4390355.

Shelite TR, Liang Y, Wang H, Mendell NL, Trent BJ, Sun J, Gong B, Xu G, Hu H, Bouyer DH, Soong L. IL-33-dependent endothelial activation contributes to apoptosis and renal injury in Orientia tsutsugamushi-infected mice. PLoS Negl Trop Dis. 2016;10(3):e0004467. Epub 2016/03/05. doi: 10.1371/journal.pntd.0004467. PubMed PMID: 26943125; PMCID: PMC4778942.

Akcay A, Nguyen Q, He Z, Turkmen K, Won Lee D, Hernando AA, Altmann C, Toker A, Pacic A, Ljubanovic DG, Jani A, Faubel S, Edelstein CL. IL-33 exacerbates acute kidney injury. J Am Soc Nephrol. 2011;22(11):2057-67. Epub 2011/09/29. doi: 10.1681/ASN.2010091011. PubMed PMID: 21949094; PMCID: PMC3279998.