The Evolution of Diagnostic Techniques in the Paleopathology of Tuberculosis: A Scoping Review

Main Article Content

Veronica Papa
Francesco M. Galassi
Elena Varotto
Andrea Gori
Mauro Vaccarezza


Tuberculosis (TB) is an ancient chronic infectious disease that remains a global health concern. In human remains, the most common and characteristic clinical signs are the skeletal modifications involving the spine, such as in Pott’s disease. Diagnosing TB in ancient human remains is challenging. Therefore, in this systematic review, the authors investigated the studies assessing molecular diagnosis of Pott’s disease in ancient human remains with the intention to survey the literature, map the evidence, and identify gaps and future perspectives on TB in paleopathology. Our systematic review offers a full contextualization of the history of Pott’s disease in ancient times. Our search strategy was performed between August 2022 and March 2023. The authors initially identified 340 records, and 74 studies were finally included and assessed for qualitative analysis. Due to non-specific clinical signs associated with TB, how best to diagnose tuberculosis in human remains still represents a central point. Nevertheless, ancient DNA (aDNA) analysis, lipid biomarkers, and spoligotyping might be extremely useful tools in the study of TB in human remains. Moreover, we propose the extraction and study of immune response genes involved in innate and adaptive immunity versus Mycobacterium spp. as an innovative and vastly overlooked approach in TB paleopathology. Complementary methodologies should be integrated to provide the best approach to the study of TB in human remains.


Download data is not yet available.

Article Details



1. Daniel TM, Iversen PA. Hippocrates and tuberculosis. Int J Tuberc Lung Dis. 2015;19(4):373-4. doi: 10.5588/ijtld.14.0736. PubMed PMID: 25859989.

2. Aufderheide AC, Rodriguez-Martin C, Langsjoen O. The Cambridge Encyclopedia of Human Paleopathology. Cambridge: Cambridge University Press; 1998 1998.

3. Marketos SG, Skiadas P. Hippocrates. The father of spine surgery. Spine (Phila Pa 1976). 1999;24(13):1381-7. doi: 10.1097/00007632-199907010-00018. PubMed PMID: 10404583.

4. Papa V, Galassi FM, Varotto E. Representation of Spinal tuberculosis in a ptolemaic dwarf statuette2020;XXVI(1):188-95.

5. Daniel TM. The history of tuberculosis. Respir Med. 2006;100(11):1862-70. doi: 10.1016/j.rmed.2006.08.006. PubMed PMID: 16949809.

6. Roberts CA. Old World tuberculosis: Evidence from human remains with a review of current research and future prospects. Tuberculosis (Edinb). 2015;95 Suppl 1(S1):S117-21. doi: 10.1016/ PubMed PMID: 25802030.

7. Global Tuberculosis Report 2022. [Internet]. [cited 2023 Jan 19]. Available from:

8. Furin J, Cox H, Pai M. Tuberculosis. Lancet. 2019;393(10181):1642-56. doi: 10.1016/S0140-6736(19)30308-3. PubMed PMID: 30904262.

9. Bagcchi S. WHO’s Global Tuberculosis Report 2022. Lancet Microbe. 2023;4(1):e20. doi: 10.1016/S2666-5247(22)00359-7. PubMed PMID: 36521512.

10. Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, Garnier T, Gutierrez C, Hewinson G, Kremer K, Parsons LM, Pym AS, Samper S, van Soolingen D, Cole ST. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A. 2002;99(6):3684-9. doi: 10.1073/pnas.052548299. PubMed PMID: 11891304; PMCID: PMC122584.

11. Blaser MJ, Kirschner D. The equilibria that allow bacterial persistence in human hosts. Nature. 2007;449(7164):843-9. doi: 10.1038/nature06198. PubMed PMID: 17943121.

12. Bos KI, Harkins KM, Herbig A, Coscolla M, Weber N, Comas I, Forrest SA, Bryant JM, Harris SR, Schuenemann VJ, Campbell TJ, Majander K, Wilbur AK, Guichon RA, Wolfe Steadman DL, Cook DC, Niemann S, Behr MA, Zumarraga M, Bastida R, Huson D, Nieselt K, Young D, Parkhill J, Buikstra JE, Gagneux S, Stone AC, Krause J. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature. 2014;514(7523):494-7. doi: 10.1038/nature13591. PubMed PMID: 25141181; PMCID: PMC4550673.

13. Clark GA, Kelley MA, Grange JM, Hill MC. The evolution of mycobacterial disease in human populations: a reevaluation. Curr Anthropol. 1987;28(1):45-62. doi: 10.1086/203490. PubMed PMID: 11618572.

14. Buzic I, Giuffra V. The paleopathological evidence on the origins of human tuberculosis: a review. J Prev Med Hyg. 2020;61(1 Suppl 1):E3-E8. doi: 10.15167/2421-4248/jpmh2020.61.1s1.1379. PubMed PMID: 32529097; PMCID: PMC7263064.

15. Morse D, Brothwell DR, Ucko PJ. Tuberculosis in Ancient Egypt. Am Rev Respir Dis. 1964;90:524-41. doi: 10.1164/arrd.1964.90.4.524. PubMed PMID: 14221665.

16. Canci A, Nencioni L, Minozzi S, Catalano P, Caramella D, Fornaciari G. A case of healing spinal infection from classical Rome. International Journal of Osteoarchaeology. 2005;15(2):77-83. doi: 10.1002/oa.734.

17. Allison MJ, Mendoza D, Pezzia A. Documentation of a case of tuberculosis in Pre-Columbian America. Am Rev Respir Dis. 1973;107(6):985-91. doi: 10.1164/arrd.1973.107.6.985. PubMed PMID: 4738888.

18. Manchester K. Tuberculosis and leprosy in antiquity: an interpretation. Med Hist. 1984;28(2):162-73. doi: 10.1017/s0025727300035705. PubMed PMID: 6387342; PMCID: PMC1139422.

19. Kelley MA, Micozzi MS. Rib lesions in chronic pulmonary tuberculosis. Am J Phys Anthropol. 1984;65(4):381-6. doi: 10.1002/ajpa.1330650407. PubMed PMID: 6395694.

20. Schultz M. Paleohistopathology of bone: a new approach to the study of ancient diseases. Am J Phys Anthropol. 2001;Suppl 33(S33):106-47. doi: 10.1002/ajpa.10024.abs. PubMed PMID: 11786993.

21. Sabbahy L. “An overview of the evidence for tuberculosis from ancient Egypt”. In Cockitt, J; David, R; Metcalfe, R Palaeopathology in Egypt and Nubia: a Century in Review: Archaeopress Publishing Limited; 2014. p. 51-5.

22. Zimmerman MR. The Mummies of the Tomb of Nebwenenef: Paleopathology and Archeology. J Am Res C Egypt. 1977;14:33-6. doi: 10.2307/40000364.

23. Zink A, Haas CJ, Reischl U, Szeimies U, Nerlich AG. Molecular analysis of skeletal tuberculosis in an ancient Egyptian population. J Med Microbiol. 2001;50(4):355-66. doi: 10.1099/0022-1317-50-4-355. PubMed PMID: 11289521.

24. Boddinghaus B, Rogall T, Flohr T, Blocker H, Bottger EC. Detection and identification of mycobacteria by amplification of rRNA. J Clin Microbiol. 1990;28(8):1751-9. doi: 10.1128/jcm.28.8.1751-1759.1990. PubMed PMID: 2203812; PMCID: PMC268042.

25. Sreevatsan S, Pan X, Stockbauer KE, Connell ND, Kreiswirth BN, Whittam TS, Musser JM. Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci U S A. 1997;94(18):9869-74. doi: 10.1073/pnas.94.18.9869. PubMed PMID: 9275218; PMCID: PMC23284.

26. Jia X, Yang L, Dong M, Chen S, Lv L, Cao D, Fu J, Yang T, Zhang J, Zhang X, Shang Y, Wang G, Sheng Y, Huang H, Chen F. The Bioinformatics Analysis of Comparative Genomics of Mycobacterium tuberculosis Complex (MTBC) Provides Insight into Dissimilarities between Intraspecific Groups Differing in Host Association, Virulence, and Epitope Diversity. Front Cell Infect Microbiol. 2017;7:88. doi: 10.3389/fcimb.2017.00088. PubMed PMID: 28377903; PMCID: PMC5360109.

27. Verma H, Nagar S, Vohra S, Pandey S, Lal D, Negi RK, Lal R, Rawat CD. Genome analyses of 174 strains of Mycobacterium tuberculosis provide insight into the evolution of drug resistance and reveal potential drug targets. Microb Genom. 2021;7(3):000542. doi: 10.1099/mgen.0.000542. PubMed PMID: 33750515; PMCID: PMC8190606.

28. McEvoy CR, Falmer AA, Gey van Pittius NC, Victor TC, van Helden PD, Warren RM. The role of IS6110 in the evolution of Mycobacterium tuberculosis. Tuberculosis (Edinb). 2007;87(5):393-404. doi: 10.1016/ PubMed PMID: 17627889.

29. Dormans J, Burger M, Aguilar D, Hernandez-Pando R, Kremer K, Roholl P, Arend SM, van Soolingen D. Correlation of virulence, lung pathology, bacterial load and delayed type hypersensitivity responses after infection with different Mycobacterium tuberculosis genotypes in a BALB/c mouse model. Clin Exp Immunol. 2004;137(3):460-8. doi: 10.1111/j.1365-2249.2004.02551.x. PubMed PMID: 15320894; PMCID: PMC1809137.

30. Reed MB, Domenech P, Manca C, Su H, Barczak AK, Kreiswirth BN, Kaplan G, Barry CE, 3rd. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature. 2004;431(7004):84-7. doi: 10.1038/nature02837. PubMed PMID: 15343336.

31. Manca C, Reed MB, Freeman S, Mathema B, Kreiswirth B, Barry CE, 3rd, Kaplan G. Differential monocyte activation underlies strain-specific Mycobacterium tuberculosis pathogenesis. Infect Immun. 2004;72(9):5511-4. doi: 10.1128/IAI.72.9.5511-5514.2004. PubMed PMID: 15322056; PMCID: PMC517425.

32. Chacon-Salinas R, Serafin-Lopez J, Ramos-Payan R, Mendez-Aragon P, Hernandez-Pando R, Van Soolingen D, Flores-Romo L, Estrada-Parra S, Estrada-Garcia I. Differential pattern of cytokine expression by macrophages infected in vitro with different Mycobacterium tuberculosis genotypes. Clin Exp Immunol. 2005;140(3):443-9. doi: 10.1111/j.1365-2249.2005.02797.x. PubMed PMID: 15932505; PMCID: PMC1809389.

33. Glynn JR, Whiteley J, Bifani PJ, Kremer K, van Soolingen D. Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. Emerg Infect Dis. 2002;8(8):843-9. doi: 10.3201/eid0805.020002. PubMed PMID: 12141971; PMCID: PMC2732522.

34. Gordon SV, Eiglmeier K, Garnier T, Brosch R, Parkhill J, Barrell B, Cole ST, Hewinson RG. Genomics of Mycobacterium bovis. Tuberculosis (Edinb). 2001;81(1-2):157-63. doi: 10.1054/tube.2000.0269. PubMed PMID: 11463237.

35. Hershkovitz I, Donoghue HD, Minnikin DE, May H, Lee OY, Feldman M, Galili E, Spigelman M, Rothschild BM, Bar-Gal GK. Tuberculosis origin: The Neolithic scenario. Tuberculosis (Edinb). 2015;95 Suppl 1:S122-6. doi: 10.1016/ PubMed PMID: 25726364.

36. Zhang HQ, Deng A, Guo CF, Wang YX, Chen LQ, Wang YF, Wu JH, Liu JY. Association between FokI polymorphism in vitamin D receptor gene and susceptibility to spinal tuberculosis in Chinese Han population. Arch Med Res. 2010;41(1):46-9. doi: 10.1016/j.arcmed.2009.12.004. PubMed PMID: 20430254.

37. Alavi SM, Sharifi M. Tuberculous spondylitis: risk factors and clinical/paraclinical aspects in the south west of Iran. J Infect Public Health. 2010;3(4):196-200. doi: 10.1016/j.jiph.2010.09.005. PubMed PMID: 21126725.

38. Garg RK, Somvanshi DS. Spinal tuberculosis: a review. J Spinal Cord Med. 2011;34(5):440-54. doi: 10.1179/2045772311Y.0000000023. PubMed PMID: 22118251; PMCID: PMC3184481.

39. Kerner G, Ramirez-Alejo N, Seeleuthner Y, Yang R, Ogishi M, Cobat A, Patin E, Quintana-Murci L, Boisson-Dupuis S, Casanova JL, Abel L. Homozygosity for TYK2 P1104A underlies tuberculosis in about 1% of patients in a cohort of European ancestry. Proc Natl Acad Sci U S A. 2019;116(21):10430-4. doi: 10.1073/pnas.1903561116. PubMed PMID: 31068474; PMCID: PMC6534977.

40. Kerner G, Laval G, Patin E, Boisson-Dupuis S, Abel L, Casanova JL, Quintana-Murci L. Human ancient DNA analyses reveal the high burden of tuberculosis in Europeans over the last 2,000 years. Am J Hum Genet. 2021;108(3):517-24. doi: 10.1016/j.ajhg.2021.02.009. PubMed PMID: 33667394; PMCID: PMC8008489.

41. Arksey H, O’Malley L. Scoping studies: towards a methodological framework. I J Soc Res Methodol. 2005;8(1):19-32. doi: 10.1080/1364557032000119616.

42. Levac D, Colquhoun H, O’Brien KK. Scoping studies: advancing the methodology. Implement Sci. 2010;5(1):69. doi: 10.1186/1748-5908-5-69. PubMed PMID: 20854677; PMCID: PMC2954944.

43. Westphaln KK, Regoeczi W, Masotya M, Vazquez-Westphaln B, Lounsbury K, McDavid L, Lee H, Johnson J, Ronis SD. From Arksey and O’Malley and Beyond: Customizations to enhance a team-based, mixed approach to scoping review methodology. MethodsX. 2021;8:101375. doi: 10.1016/j.mex.2021.101375. PubMed PMID: 34430271; PMCID: PMC8374523.

44. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA, Group P-P. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1. doi: 10.1186/2046-4053-4-1. PubMed PMID: 25554246; PMCID: PMC4320440.

45. Aromataris E, Riitano D. Constructing a search strategy and searching for evidence. A guide to the literature search for a systematic review. Am J Nurs. 2014;114(5):49-56. doi: 10.1097/01.NAJ.0000446779.99522.f6. PubMed PMID: 24759479.

46. Tricco AC, Lillie E, Zarin W, O’Brien K, Colquhoun H, Kastner M, Levac D, Ng C, Sharpe JP, Wilson K, Kenny M, Warren R, Wilson C, Stelfox HT, Straus SE. A scoping review on the conduct and reporting of scoping reviews. BMC Med Res Methodol. 2016;16(1):15. doi: 10.1186/s12874-016-0116-4. PubMed PMID: 26857112; PMCID: PMC4746911.

47. Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, Moher D, Peters MDJ, Horsley T, Weeks L, Hempel S, Akl EA, Chang C, McGowan J, Stewart L, Hartling L, Aldcroft A, Wilson MG, Garritty C, Lewin S, Godfrey CM, Macdonald MT, Langlois EV, Soares-Weiser K, Moriarty J, Clifford T, Tuncalp O, Straus SE. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med. 2018;169(7):467-73. doi: 10.7326/M18-0850. PubMed PMID: 30178033.

48. Charmaz K. Grounded Theory in the 21st Century: Applications for Advancing Social Justice Studies. The Sage handbook of qualitative research, 3rd ed. Thousand Oaks, CA: Sage Publications Ltd; 2005. p. 507-35.

49. Grossoehme DH. Overview of qualitative research. J Health Care Chaplain. 2014;20(3):109-22. doi: 10.1080/08854726.2014.925660. PubMed PMID: 24926897; PMCID: PMC4609437.

50. Chai KEK, Lines RLJ, Gucciardi DF, Ng L. Research Screener: a machine learning tool to semi-automate abstract screening for systematic reviews. Syst Rev. 2021;10(1):93. doi: 10.1186/s13643-021-01635-3. PubMed PMID: 33795003; PMCID: PMC8017894.

51. Donoghue HD. Human tuberculosis--an ancient disease, as elucidated by ancient microbial biomolecules. Microbes Infect. 2009;11(14-15):1156-62. doi: 10.1016/j.micinf.2009.08.008. PubMed PMID: 19720155.

52. Donoghue HD, Spigelman M, O’Grady J, Szikossy I, Pap I, Lee OY, Wu HH, Besra GS, Minnikin DE. Ancient DNA analysis - An established technique in charting the evolution of tuberculosis and leprosy. Tuberculosis (Edinb). 2015;95 Suppl 1(S1):S140-4. doi: 10.1016/ PubMed PMID: 25773651.

53. Donoghue HD. Paleomicrobiology of Human tuberculosis. Microbiol Spectr. 2016;4(4):1-14. doi: 10.1128/microbiolspec.PoH-0003-2014. PubMed PMID: 27726782.

54. Dutour O. Paleopathology of Human Infections: Old Bones, Antique Books, Ancient and Modern Molecules. Microbiol Spectr. 2016;4(4). doi: 10.1128/microbiolspec.PoH-0014-2015. PubMed PMID: 27726818.

55. Harkins KM, Buikstra JE, Campbell T, Bos KI, Johnson ED, Krause J, Stone AC. Screening ancient tuberculosis with qPCR: challenges and opportunities. Philos Trans R Soc Lond B Biol Sci. 2015;370(1660):20130622. doi: 10.1098/rstb.2013.0622. PubMed PMID: 25487341; PMCID: PMC4275897.

56. Witas HW, Donoghue HD, Kubiak D, Lewandowska M, Gladykowska-Rzeczycka JJ. Molecular studies on ancient M. tuberculosis and M. leprae: methods of pathogen and host DNA analysis. Eur J Clin Microbiol Infect Dis. 2015;34(9):1733-49. doi: 10.1007/s10096-015-2427-5. PubMed PMID: 26210385; PMCID: PMC4545183.

57. Bazeley P, Jackson K. Qualitative data analysis with NVivo. Second edition ed. Los Angeles; London: SAGE Publications; 2013 2013. 307 p.

58. Wong L. Data analysis in qualitative research: a brief guide to using nvivo. Malays Fam Physician. 2008;3(1):14-20. PubMed PMID: 25606106; PMCID: PMC4267019.

59. The polymerase chain reaction: An overview and development of diagnostic PCR protocols at the LCDC. Can J Infect Dis. 1991;2(2):89-91. doi: 10.1155/1991/580478. PubMed PMID: 22529715; PMCID: PMC3327995.

60. Erlich HA. Polymerase chain reaction. J Clin Immunol. 1989;9(6):437-47. doi: 10.1007/BF00918012. PubMed PMID: 2698397.

61. White TJ, Arnheim N, Erlich HA. The polymerase chain reaction. Trends Genet. 1989;5(6):185-9. doi: 10.1016/0168-9525(89)90073-5. PubMed PMID: 2672459.

62. Witt N, Rodger G, Vandesompele J, Benes V, Zumla A, Rook GA, Huggett JF. An assessment of air as a source of DNA contamination encountered when performing PCR. J Biomol Tech. 2009;20(5):236-40.

63. Müller R, Roberts CA, Brown TA. Complications in the study of ancient tuberculosis: Presence of environmental bacteria in human archaeological remains. J Archaeol Sci. 2016;68:5-11. doi: 10.1016/j.jas.2016.03.002.

64. Wilbur AK, Bouwman AS, Stone AC, Roberts CA, Pfister L-A, Buikstra JE, Brown TA. Deficiencies and challenges in the study of ancient tuberculosis DNA. J Archaeol Sci. 2009;36(9):1990-7. doi: 10.1016/j.jas.2009.05.020.

65. Taylor GM, Mays SA, Huggett JF. Ancient DNA (aDNA) studies of man and microbes: general similarities, specific differences. International Journal of Osteoarchaeology. 2010;20(6):747-51. doi: 10.1002/oa.1077.

66. Spigelman M, Lemma E. The use of the polymerase chain reaction (PCR) to detectMycobacterium tuberculosis in ancient skeletons. International Journal of Osteoarchaeology. 1993;3(2):137-43. doi: 10.1002/oa.1390030211.

67. Salo WL, Aufderheide AC, Buikstra J, Holcomb TA. Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy. Proc Natl Acad Sci U S A. 1994;91(6):2091-4. doi: 10.1073/pnas.91.6.2091. PubMed PMID: 8134354; PMCID: PMC43315.

68. Wooding JE, King SS, Taylor GM, Knüsel CJ, Bond JM, Dent JS. Reviewing the palaeopathological evidence for bovine tuberculosis in the associated bone groups at Wetwang Slack, East Yorkshire. International Journal of Osteoarchaeology. 2020;32(3):572-83. doi: 10.1002/oa.2846.

69. Forst J, Brown TA. Inability of ‘Whole Genome Amplification’ to Improve Success Rates for the Biomolecular Detection of Tuberculosis in Archaeological Samples. PLoS One. 2016;11(9):e0163031. doi: 10.1371/journal.pone.0163031. PubMed PMID: 27654468; PMCID: PMC5031403.

70. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393(6685):537-44. doi: 10.1038/31159. PubMed PMID: 9634230.

71. Garnier T, Eiglmeier K, Camus JC, Medina N, Mansoor H, Pryor M, Duthoy S, Grondin S, Lacroix C, Monsempe C, Simon S, Harris B, Atkin R, Doggett J, Mayes R, Keating L, Wheeler PR, Parkhill J, Barrell BG, Cole ST, Gordon SV, Hewinson RG. The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci U S A. 2003;100(13):7877-82. doi: 10.1073/pnas.1130426100. PubMed PMID: 12788972; PMCID: PMC164681.

72. Gordon SV, Heym B, Parkhill J, Barrell B, Cole ST. New insertion sequences and a novel repeated sequence in the genome of Mycobacterium tuberculosis H37Rv. Microbiology (Reading). 1999;145 ( Pt 4):881-92. doi: 10.1099/13500872-145-4-881. PubMed PMID: 10220167.

73. Thierry D, Brisson-Noel A, Vincent-Levy-Frebault V, Nguyen S, Guesdon JL, Gicquel B. Characterization of a Mycobacterium tuberculosis insertion sequence, IS6110, and its application in diagnosis. J Clin Microbiol. 1990;28(12):2668-73. doi: 10.1128/jcm.28.12.2668-2673.1990. PubMed PMID: 2177747; PMCID: PMC268253.

74. Müller R, Roberts CA, Brown TA. Complications in the study of ancient tuberculosis: non-specificity of IS6110 PCRs. STAR: Science & Technology of Archaeological Research. 2015;1(1):1-8. doi: 10.1179/2054892314y.0000000002.

75. Neparáczki E. Preliminary results from the paleomicrobiological studies of Mycobacterium tuberculosis infection in the Bácsalmás-Óalmás anthropological series. Acta Biologica Szegediensis. 2011;55(1):41-5.

76. Bouwman AS, Kennedy SL, Muller R, Stephens RH, Holst M, Caffell AC, Roberts CA, Brown TA. Genotype of a historic strain of Mycobacterium Tuberculosis. Proc Natl Acad Sci U S A. 2012;109(45):18511-6. doi: 10.1073/pnas.1209444109. PubMed PMID: 23091009; PMCID: PMC3494915.

77. Borowka P, Pulaski L, Marciniak B, Borowska-Struginska B, Dziadek J, Zadzinska E, Lorkiewicz W, Strapagiel D. Screening methods for detection of ancient Mycobacterium tuberculosis complex fingerprints in next-generation sequencing data derived from skeletal samples. Gigascience. 2019;8(6):1-14. doi: 10.1093/gigascience/giz065. PubMed PMID: 31220249; PMCID: PMC6586198.

78. Crubezy E, Ludes B, Poveda JD, Clayton J, Crouau-Roy B, Montagnon D. Identification of Mycobacterium DNA in an Egyptian Pott’s disease of 5,400 years old. C R Acad Sci III. 1998;321(11):941-51. doi: 10.1016/s0764-4469(99)80009-2. PubMed PMID: 9879471.

79. Baker O, Chamel B, Coqueugniot É, Khawam R, Stordeur D, Perrin P, Pálfi G, Gourichon L, Coqueugniot H, Le Mort F, Dutour O. Prehistory of human tuberculosis: Earliest evidence from the onset of animal husbandry in the Near East. Paléorient. 2017;43(2):35-51. doi: 10.3406/paleo.2017.5765.

80. Baker O, Lee OY, Wu HH, Besra GS, Minnikin DE, Llewellyn G, Williams CM, Maixner F, O’Sullivan N, Zink A, Chamel B, Khawam R, Coqueugniot E, Helmer D, Le Mort F, Perrin P, Gourichon L, Dutailly B, Palfi G, Coqueugniot H, Dutour O. Human tuberculosis predates domestication in ancient Syria. Tuberculosis (Edinb). 2015;95 Suppl 1:S4-S12. doi: 10.1016/ PubMed PMID: 25819157.

81. Guichon RA, Buikstra JE, Stone AC, Harkins KM, Suby JA, Massone M, Prieto Lglesias A, Wilbur A, Constantinescu F, Rodriguez Martin C. Pre-Columbian tuberculosis in Tierra del Fuego? Discussion of the paleopathological and molecular evidence. Int J Paleopathol. 2015;11:92-101. doi: 10.1016/j.ijpp.2015.09.003. PubMed PMID: 28802973.

82. Jaeger LH, de Souza SM, Dias OF, Iniguez AM. Mycobacterium tuberculosis complex in remains of 18th-19th century slaves, Brazil. Emerg Infect Dis. 2013;19(5):837-9. doi: 10.3201/eid1905.120193. PubMed PMID: 23697340; PMCID: PMC3647487.

83. Jaeger LH, Leles D, Lima Vdos S, da Silva Lda P, Dias O, Iniguez AM. Mycobacterium tuberculosis complex detection in human remains: Tuberculosis spread since the 17th century in Rio de Janeiro, Brazil. Infect Genet Evol. 2012;12(4):642-8. doi: 10.1016/j.meegid.2011.08.021. PubMed PMID: 21896337.

84. Luna LH, Aranda CM, Santos AL, Donoghue HD, Lee OY, Wu HHT, Besra GS, Minnikin DE, Llewellyn G, Williams CM, Ratto N. Oldest evidence of tuberculosis in Argentina: A multidisciplinary investigation in an adult male skeleton from Saujil, Tinogasta, Catamarca (905-1030 CE). Tuberculosis (Edinb). 2020;125(September):101995. doi: 10.1016/ PubMed PMID: 32979676.

85. Hajdu T, Fothi E, Kovari I, Merczi M, Molnar A, Maasz G, Avar P, Marcsik A, Mark L. Bone tuberculosis in Roman Period Pannonia (western Hungary). Mem Inst Oswaldo Cruz. 2012;107(8):1048-53. doi: 10.1590/s0074-02762012000800014. PubMed PMID: 23295757.

86. Dawson H, Robson Brown K. Childhood tuberculosis: A probable case from late mediaeval Somerset, England. Int J Paleopathol. 2012;2(1):31-5. doi: 10.1016/j.ijpp.2012.04.001. PubMed PMID: 29539350.

87. Bianucci R, Giuffra V, Bachmeier BE, Ball M, Pusch CM, Fornaciari G, Nerlich AG. Eleonora of Toledo (1522-1562): Evidence for tuberculosis and leishmaniasis co-infection in Renaissance Italy. Int J Paleopathol. 2012;2(4):231-5. doi: 10.1016/j.ijpp.2012.11.002. PubMed PMID: 29539370.

88. Fletcher HA, Donoghue HD, Holton J, Pap I, Spigelman M. Widespread occurrence of Mycobacterium tuberculosis DNA from 18th-19th century Hungarians. Am J Phys Anthropol. 2003;120(2):144-52. doi: 10.1002/ajpa.10114. PubMed PMID: 12541332.

89. Hajdu T, Donoghue HD, Bernert Z, Fothi E, Kovari I, Marcsik A. A case of spinal tuberculosis from the middle ages in Transylvania (Romania). Spine (Phila Pa 1976). 2012;37(25):E1598-601. doi: 10.1097/BRS.0b013e31827300dc. PubMed PMID: 22976345.

90. Hershkovitz I, Donoghue HD, Minnikin DE, Besra GS, Lee OY, Gernaey AM, Galili E, Eshed V, Greenblatt CL, Lemma E, Bar-Gal GK, Spigelman M. Detection and molecular characterization of 9,000-year-old Mycobacterium tuberculosis from a Neolithic settlement in the Eastern Mediterranean. PLoS One. 2008;3(10):e3426. doi: 10.1371/journal.pone.0003426. PubMed PMID: 18923677; PMCID: PMC2565837.

91. Kalova K, Boberova K, Prichystalova R, Novacek J, Jarosova I, Zikmund T, Kaiser J, Kyselicova K, Sebest L, Baldovic M, Frtus A, Sikora M, Allentoft ME. Serious chronic disease of the cervical spine and trauma in a young female from the middle ages (Czech Republic). Int J Paleopathol. 2019;24(October 2017):185-96. doi: 10.1016/j.ijpp.2018.11.004. PubMed PMID: 30497062.

92. Masson M, Molnar E, Donoghue HD, Besra GS, Minnikin DE, Wu HH, Lee OY, Bull ID, Palfi G. Osteological and biomolecular evidence of a 7000-year-old case of hypertrophic pulmonary osteopathy secondary to tuberculosis from neolithic hungary. PLoS One. 2013;8(10):e78252. doi: 10.1371/journal.pone.0078252. PubMed PMID: 24205173; PMCID: PMC3813517.

93. Masson M, Bereczki Z, Molnar E, Donoghue HD, Minnikin DE, Lee OY, Wu HH, Besra GS, Bull ID, Palfi G. 7000 year-old tuberculosis cases from Hungary - Osteological and biomolecular evidence. Tuberculosis (Edinb). 2015;95 Suppl 1(S1):S13-7. doi: 10.1016/ PubMed PMID: 25736538.

94. Muller R, Roberts CA, Brown TA. Biomolecular identification of ancient Mycobacterium tuberculosis complex DNA in human remains from Britain and continental Europe. Am J Phys Anthropol. 2014;153(2):178-89. doi: 10.1002/ajpa.22417. PubMed PMID: 24226751.

95. Pósa A, Maixner F, Zink A, Lovász G, Molnár E, Bereczki Z, Perrin P, Dutour O, Sola C, Pálfi G. Ancient human tooth samples used for TB paleomicrobial research. Acta Biologica Szegediensis. 2012;56(2):125-31.

96. Posa A, Maixner F, Mende BG, Kohler K, Osztas A, Sola C, Dutour O, Masson M, Molnar E, Palfi G, Zink A. tuberculosis in Late Neolithic-Early Copper Age human skeletal remains from Hungary. Tuberculosis (Edinb). 2015;95 Suppl 1(S1):S18-22. doi: 10.1016/ PubMed PMID: 25857937.

97. Szikossy I, Pálfi G, Molnár E, Karlinger K, Kovács BK, Korom C, Schultz M, Schmidt-Schultz TH, Spigelman M, Donoghue HD, Kustár Á, Pap I. Two positive tuberculosis cases in the late Nigrovits family, 18th century, Vác, Hungary. Tuberculosis. 2015;95:S69-S72. doi: 10.1016/

98. Taylor GM, Murphy E, Hopkins R, Rutland P, Chistov Y. First report of Mycobacterium bovis DNA in human remains from the Iron Age. Microbiology (Reading). 2007;153(Pt 4):1243-9. doi: 10.1099/mic.0.2006/002154-0. PubMed PMID: 17379733.

99. Teschler-Nicola M, Novotny F, Spannagl-Steiner M, Stadler P, Prohaska T, Irrgeher J, Zitek A, Daubl B, Haring E, Rumpelmayr K, Wild EM. The Early Mediaeval manorial estate of Gars/Thunau, Lower Austria: An enclave of endemic tuberculosis? Tuberculosis (Edinb). 2015;95 Suppl 1(S1):S51-9. doi: 10.1016/ PubMed PMID: 25857936.

100. Boros-Major A, Bona A, Lovasz G, Molnar E, Marcsik A, Palfi G, Mark L. New perspectives in biomolecular paleopathology of ancient tuberculosis: a proteomic approach. J Archaeol Sci. 2011;38(1):197-201. doi: 10.1016/j.jas.2010.09.008.

101. Anastasiou E, Mitchell PD. Palaeopathology and genes: investigating the genetics of infectious diseases in excavated human skeletal remains and mummies from past populations. Gene. 2013;528(1):33-40. doi: 10.1016/j.gene.2013.06.017. PubMed PMID: 23792062.

102. Donoghue HD, Spigelman M, Greenblatt CL, Lev-Maor G, Bar-Gal GK, Matheson C, Vernon K, Nerlich AG, Zink AR. Tuberculosis: from prehistory to Robert Koch, as revealed by ancient DNA. Lancet Infect Dis. 2004;4(9):584-92. doi: 10.1016/S1473-3099(04)01133-8. PubMed PMID: 15336226.

103. Donoghue HD. Insights gained from ancient biomolecules into past and present tuberculosis—a personal perspective. Int J Infect Dis. 2017;56:176-80. doi: 10.1016/j.ijid.2016.11.413. PubMed PMID: 27915106.

104. Donoghue HD. Insights gained from palaeomicrobiology into ancient and modern tuberculosis. Clin Microbiol Infect. 2011;17(6):821-9. doi: 10.1111/j.1469-0691.2011.03554.x. PubMed PMID: 21682803.

105. Gad YZ, Hassan NA, Mousa DM, Fouad FA, El-Sayed SG, Abdelazeem MA, Mahdy SM, Othman HY, Ibrahim DW, Khairat R, Ismail S. Insights from ancient DNA analysis of Egyptian human mummies: clues to disease and kinship. Hum Mol Genet. 2021;30(R1):R24-R8. doi: 10.1093/hmg/ddaa223. PubMed PMID: 33059357.

106. Vargova L, Vymazalova K, Horackova L. A brief history of tuberculosis in the Czech Lands. Tuberculosis (Edinb). 2017;105:35-48. doi: 10.1016/ PubMed PMID: 28610786.

107. Gernaey AM, Minnikin DE, Copley MS, Dixon RA, Middleton JC, Roberts CA. Mycolic acids and ancient DNA confirm an osteological diagnosis of tuberculosis. Tuberculosis (Edinb). 2001;81(4):259-65. doi: 10.1054/tube.2001.0295. PubMed PMID: 11584593.

108. Darling MI, Donoghue HD. Insights from paleomicrobiology into the indigenous peoples of pre-colonial America — a review. Mem Inst Oswaldo Cruz. 2014;109(2):131-9. doi: 10.1590/0074-0276140589. PubMed PMID: 24714964; PMCID: PMC4015261.

109. Donoghue H, Taylor G, Stewart G, Lee O, Wu H, Besra G, Minnikin D. Positive Diagnosis of Ancient Leprosy and Tuberculosis Using Ancient DNA and Lipid Biomarkers. Diversity. 2017;9(4):46. doi: 10.3390/d9040046.

110. Váradi OA, Szikossy I, Spekker O, Rakk D, Terhes G, Urbán E, Berthon W, Pap I, Maixner F, Zink A, Vágvölgyi C, Donoghue HD, Minnikin DE, Pálfi G, Szekeres A. Lipid biomarker-based verification of TB infection in mother’s and daughter’s mummified human remains (Vác Mummy Collection, 18th century, CE, Hungary). Acta Biologica Szegediensis. 2021;64(2):99-109. doi: 10.14232/abs.2020.2.99-109.

111. Redman JE, Shaw MJ, Mallet AI, Santos AL, Roberts CA, Gernaey AM, Minnikin DE. Mycocerosic acid biomarkers for the diagnosis of tuberculosis in the Coimbra Skeletal Collection. Tuberculosis (Edinb). 2009;89(4):267-77. doi: 10.1016/ PubMed PMID: 19493698.

112. Zink AR, Grabner W, Reischl U, Wolf H, Nerlich AG. Molecular study on human tuberculosis in three geographically distinct and time delineated populations from ancient Egypt. Epidemiol Infect. 2003;130(2):239-49. doi: 10.1017/s0950268802008257. PubMed PMID: 12729192; PMCID: PMC2869959.

113. Baron H, Hummel S, Herrmann B. Mycobacterium Tuberculosis DNA in Ancient Human Bones. J Archaeol Sci. 1996;23(5):667-71. doi: 10.1006/jasc.1996.0063.

114. Spigelman M, Matheson C, Lev G, Greenblatt C, Donoghue HD. Confirmation of the presence ofMycobacterium tuberculosis complex-specific DNA in three archaeological specimens. International Journal of Osteoarchaeology. 2002;12(6):393-401. doi: 10.1002/oa.638.

115. Konomi N, Lebwohl E, Mowbray K, Tattersall I, Zhang D. Detection of mycobacterial DNA in Andean mummies. J Clin Microbiol. 2002;40(12):4738-40. doi: 10.1128/JCM.40.12.4738-4740.2002. PubMed PMID: 12454182; PMCID: PMC154635.

116. Mays S, Fysh E, Taylor GM. Investigation of the link between visceral surface rib lesions and tuberculosis in a Medieval skeletal series from England using ancient DNA. Am J Phys Anthropol. 2002;119(1):27-36. doi: 10.1002/ajpa.10099. PubMed PMID: 12209571.

117. Minnikin DE, Lee OY, Wu HH, Besra GS, Bhatt A, Nataraj V, Rothschild BM, Spigelman M, Donoghue HD. Ancient mycobacterial lipids: Key reference biomarkers in charting the evolution of tuberculosis. Tuberculosis (Edinb). 2015;95 Suppl 1:S133-9. doi: 10.1016/ PubMed PMID: 25736170.

118. Lee OY, Wu HH, Besra GS, Rothschild BM, Spigelman M, Hershkovitz I, Bar-Gal GK, Donoghue HD, Minnikin DE. Lipid biomarkers provide evolutionary signposts for the oldest known cases of tuberculosis. Tuberculosis (Edinb). 2015;95 Suppl 1:S127-32. doi: 10.1016/ PubMed PMID: 25797611.

119. Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, Bunschoten A, Molhuizen H, Shaw R, Goyal M, van Embden J. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997;35(4):907-14. doi: 10.1128/jcm.35.4.907-914.1997. PubMed PMID: 9157152; PMCID: PMC229700.

120. Groenen PM, Bunschoten AE, van Soolingen D, van Embden JD. Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method. Mol Microbiol. 1993;10(5):1057-65. doi: 10.1111/j.1365-2958.1993.tb00976.x. PubMed PMID: 7934856.

121. Zink AR, Sola C, Reischl U, Grabner W, Rastogi N, Wolf H, Nerlich AG. Characterization of Mycobacterium tuberculosis complex DNAs from Egyptian mummies by spoligotyping. J Clin Microbiol. 2003;41(1):359-67. doi: 10.1128/JCM.41.1.359-367.2003. PubMed PMID: 12517873; PMCID: PMC149558.

122. Knapp M, Hofreiter M. Next Generation Sequencing of Ancient DNA: Requirements, Strategies and Perspectives. Genes (Basel). 2010;1(2):227-43. doi: 10.3390/genes1020227. PubMed PMID: 24710043; PMCID: PMC3954087.

123. Doring Y, van der Vorst EPC, Duchene J, Jansen Y, Gencer S, Bidzhekov K, Atzler D, Santovito D, Rader DJ, Saleheen D, Weber C. CXCL12 Derived From Endothelial Cells Promotes Atherosclerosis to Drive Coronary Artery Disease. Circulation. 2019;139(10):1338-40. doi: 10.1161/CIRCULATIONAHA.118.037953. PubMed PMID: 30865486; PMCID: PMC6417827.

124. Klunk J, Vilgalys TP, Demeure CE, Cheng X, Shiratori M, Madej J, Beau R, Elli D, Patino MI, Redfern R, DeWitte SN, Gamble JA, Boldsen JL, Carmichael A, Varlik N, Eaton K, Grenier JC, Golding GB, Devault A, Rouillard JM, Yotova V, Sindeaux R, Ye CJ, Bikaran M, Dumaine A, Brinkworth JF, Missiakas D, Rouleau GA, Steinrucken M, Pizarro-Cerda J, Poinar HN, Barreiro LB. Evolution of immune genes is associated with the Black Death. Nature. 2022;611(7935):312-9. doi: 10.1038/s41586-022-05349-x. PubMed PMID: 36261521; PMCID: PMC9580435.

125. Manry J, Laval G, Patin E, Fornarino S, Tichit M, Bouchier C, Barreiro LB, Quintana-Murci L. Evolutionary genetics evidence of an essential, nonredundant role of the IFN-gamma pathway in protective immunity. Hum Mutat. 2011;32(6):633-42. doi: 10.1002/humu.21484. PubMed PMID: 21448974.

126. Andres AM, Dennis MY, Kretzschmar WW, Cannons JL, Lee-Lin SQ, Hurle B, Program NCS, Schwartzberg PL, Williamson SH, Bustamante CD, Nielsen R, Clark AG, Green ED. Balancing selection maintains a form of ERAP2 that undergoes nonsense-mediated decay and affects antigen presentation. PLoS Genet. 2010;6(10):e1001157. doi: 10.1371/journal.pgen.1001157. PubMed PMID: 20976248; PMCID: PMC2954825.

127. Ye CJ, Chen J, Villani AC, Gate RE, Subramaniam M, Bhangale T, Lee MN, Raj T, Raychowdhury R, Li W, Rogel N, Simmons S, Imboywa SH, Chipendo PI, McCabe C, Lee MH, Frohlich IY, Stranger BE, De Jager PL, Regev A, Behrens T, Hacohen N. Genetic analysis of isoform usage in the human anti-viral response reveals influenza-specific regulation of ERAP2 transcripts under balancing selection. Genome Res. 2018;28(12):1812-25. doi: 10.1101/gr.240390.118. PubMed PMID: 30446528; PMCID: PMC6280757.

128. Henneberg M, Holloway-Kew K, Lucas T. Human major infections: tuberculosis, treponematoses, leprosy-A paleopathological perspective of their evolution. PLoS One. 2021;16(2):e0243687. doi: 10.1371/journal.pone.0243687. PubMed PMID: 33630846; PMCID: PMC7906324.

129. Spekker O, Hunt DR, Kiraly K, Kis L, Madai A, Szalontai C, Molnar E, Palfi G. Lumbosacral tuberculosis, a rare manifestation of Pott’s disease - How identified human skeletons from the pre-antibiotic era can be used as reference cases to establish a palaeopathological diagnosis of tuberculosis. Tuberculosis (Edinb). 2023;138:102287. doi: 10.1016/ PubMed PMID: 36450192.

Most read articles by the same author(s)