Immunohematologic Biomarkers in COVID-19: Insights into Pathogenesis, Prognosis, and Prevention

Main Article Content

David R. Sweet
Michael L. Freeman
David A. Zidar

Abstract

Coronavirus disease 2019 (COVID-19) has had profound effects on the health of individuals and on healthcare systems worldwide. While healthcare workers on the frontlines have fought to quell multiple waves of infection, the efforts of the larger research community have changed the arch of this pandemic as well. This review will focus on biomarker discovery and other efforts to identify features that predict outcomes, and in so doing, identify possible effector and passenger mechanisms of adverse outcomes. Identifying measurable soluble factors, cell-types, and clinical parameters that predict a patient’s disease course will have a legacy for the study of immunologic responses, especially stimuli, which induce an overactive, yet ineffectual immune system. As prognostic biomarkers were identified, some have served to represent pathways of therapeutic interest in clinical trials. The pandemic conditions have created urgency for accelerated target identification and validation. Collectively, these COVID-19 studies of biomarkers, disease outcomes, and therapeutic efficacy have revealed that immunologic systems and responses to stimuli are more heterogeneous than previously assumed. Understanding the genetic and acquired features that mediate divergent immunologic outcomes in response to this global exposure is ongoing and will ultimately improve our preparedness for future pandemics, as well as impact preventive approaches to other immunologic diseases.

Downloads

Download data is not yet available.

Article Details

Section
Reviews

References

1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. Epub 2020/01/28. doi: 10.1016/s0140-6736(20)30183-5. PubMed PMID: 31986264; PMCID: PMC7159299.

DOI: https://doi.org/10.1016/S0140-6736(20)30183-5

2. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62. Epub 2020/03/15. doi: 10.1016/s0140-6736(20)30566-3. PubMed PMID: 32171076; PMCID: PMC7270627.

DOI: https://doi.org/10.1016/S0140-6736(20)30566-3

3. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Zhang L, Zhou X, Du C, Zhang Y, Song J, Wang S, Chao Y, Yang Z, Xu J, Zhou X, Chen D, Xiong W, Xu L, Zhou F, Jiang J, Bai C, Zheng J, Song Y. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934-43. Epub 2020/03/14. doi: 10.1001/jamainternmed.2020.0994. PubMed PMID: 32167524; PMCID: PMC7070509.

DOI: https://doi.org/10.1001/jamainternmed.2020.0994

4. Zhu B, Feng X, Jiang C, Mi S, Yang L, Zhao Z, Zhang Y, Zhang L. Correlation between white blood cell count at admission and mortality in COVID-19 patients: a retrospective study. BMC Infectious Diseases. 2021;21(1):574. doi: 10.1186/s12879-021-06277-3.

DOI: https://doi.org/10.1186/s12879-021-06277-3

5. Yamada T, Wakabayashi M, Yamaji T, Chopra N, Mikami T, Miyashita H, Miyashita S. Value of leukocytosis and elevated C-reactive protein in predicting severe coronavirus 2019 (COVID-19): A systematic review and meta-analysis. Clin Chim Acta. 2020;509:235-43. Epub 2020/06/14. doi: 10.1016/j.cca.2020.06.008. PubMed PMID: 32533986; PMCID: PMC7832771.

DOI: https://doi.org/10.1016/j.cca.2020.06.008

6. Huang Y, Zhang Y, Ma L. Meta-analysis of laboratory results in patients with severe coronavirus disease 2019. Exp Ther Med. 2021;21(5):449. doi: 10.3892/etm.2021.9877.

DOI: https://doi.org/10.3892/etm.2021.9877

7. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia Ja, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 2020;395(10223):507-13. doi: https://doi.org/10.1016/S0140-6736(20)30211-7.

DOI: https://doi.org/10.1016/S0140-6736(20)30211-7

8. Urra JM, Cabrera CM, Porras L, Ródenas I. Selective CD8 cell reduction by SARS-CoV-2 is associated with a worse prognosis and systemic inflammation in COVID-19 patients. Clin Immunol. 2020;217:108486. Epub 2020/06/02. doi: 10.1016/j.clim.2020.108486. PubMed PMID: 32479985; PMCID: PMC7256549.

DOI: https://doi.org/10.1016/j.clim.2020.108486

9. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Medicine. 2020;46(5):846-8. doi: 10.1007/s00134-020-05991-x.

DOI: https://doi.org/10.1007/s00134-020-05991-x

10. Lian J, jin C, Hao S, Zhang X, Yang M, Jin X, Lu Y, Hu J, Zhang S, Zheng L, Jia H, Cai H, Zhang Y, Yu G, Wang X, Gu J, Ye C, Yu X, Gao J, Yang Y, Sheng J. High neutrophil-to-lymphocyte ratio associated with progression to critical illness in older patients with COVID-19: a multicenter retrospective study. Aging. 2020;12(14):13849-59. doi: 10.18632/Aging.103582.

DOI: https://doi.org/10.18632/aging.103582

11. Malik P, Patel U, Mehta D, Patel N, Kelkar R, Akrmah M, Gabrilove JL, Sacks H. Biomarkers and outcomes of COVID-19 hospitalisations: systematic review and meta-analysis. BMJ Evidence-Based Medicine. 2021;26(3):107-8. doi: 10.1136/bmjebm-2020-111536.

DOI: https://doi.org/10.1136/bmjebm-2020-111536

12. Fan BE, Chong VCL, Chan SSW, Lim GH, Lim KGE, Tan GB, Mucheli SS, Kuperan P, Ong KH. Hematologic parameters in patients with COVID-19 infection. Am J Hematol. 2020;95(6):E131-e4. Epub 2020/03/05. doi: 10.1002/ajh.25774. PubMed PMID: 32129508.

13. Deng Y, Liu W, Liu K, Fang YY, Shang J, Zhou L, Wang K, Leng F, Wei S, Chen L, Liu HG. Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 in Wuhan, China: a retrospective study. Chin Med J (Engl). 2020;133(11):1261-7. Epub 2020/03/27. doi: 10.1097/cm9.0000000000000824. PubMed PMID: 32209890; PMCID: PMC7289311.

DOI: https://doi.org/10.1097/CM9.0000000000000824

14. Tan L, Wang Q, Zhang D, Ding J, Huang Q, Tang Y-Q, Wang Q, Miao H. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduction and Targeted Therapy. 2020;5(1):33. doi: 10.1038/s41392-020-0148-4.

DOI: https://doi.org/10.1038/s41392-020-0148-4

15. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. Jama. 2020;323(11):1061-9. Epub 2020/02/08. doi: 10.1001/Jama.2020.1585. PubMed PMID: 32031570; PMCID: PMC7042881.

DOI: https://doi.org/10.1001/jama.2020.1585

16. Peñaloza HF, Lee JS, Ray P. Neutrophils and lymphopenia, an unknown axis in severe COVID-19 disease. PLOS Pathogens. 2021;17(9):e1009850. doi: 10.1371/journal.ppat.1009850.

DOI: https://doi.org/10.1371/journal.ppat.1009850

17. Zhang S, Asquith B, Szydlo R, Tregoning JS, Pollock KM. Peripheral T cell lymphopenia in COVID-19: potential mechanisms and impact. Immunotherapy Advances. 2021;1(1). doi: 10.1093/immadv/ltab015.

DOI: https://doi.org/10.1093/immadv/ltab015

18. Guo Z, Zhang Z, Prajapati M, Li Y. Lymphopenia Caused by Virus Infections and the Mechanisms Beyond. Viruses. 2021;13(9). Epub 2021/09/29. doi: 10.3390/v13091876. PubMed PMID: 34578457; PMCID: PMC8473169.

19. Han H, Xu Z, Cheng X, Zhong Y, Yuan L, Wang F, Li Y, Liu F, Jiang Y, Zhu C, Xia Y. Descriptive, Retrospective Study of the Clinical Characteristics of Asymptomatic COVID-19 Patients. mSphere. 2020;5(5):e00922-20. doi: 10.1128/mSphere.00922-20.

DOI: https://doi.org/10.1128/mSphere.00922-20

20. Afari ME, Bhat T. Neutrophil to lymphocyte ratio (NLR) and cardiovascular diseases: an update. Expert Review of Cardiovascular Therapy. 2016;14(5):573-7. doi: 10.1586/14779072.2016.1154788.

DOI: https://doi.org/10.1586/14779072.2016.1154788

21. Templeton AJ, McNamara MG, Šeruga B, Vera-Badillo FE, Aneja P, Ocaña A, Leibowitz-Amit R, Sonpavde G, Knox JJ, Tran B, Tannock IF, Amir E. Prognostic Role of Neutrophil-to-Lymphocyte Ratio in Solid Tumors: A Systematic Review and Meta-Analysis. JNCI: Journal of the National Cancer Institute. 2014;106(6). doi: 10.1093/jnci/dju124.

DOI: https://doi.org/10.1093/jnci/dju124

22. Yang Z, Zhang Z, Lin F, Ren Y, Liu D, Zhong R, Liang Y. Comparisons of neutrophil-, monocyte-, eosinophil-, and basophil- lymphocyte ratios among various systemic autoimmune rheumatic diseases. APMIS. 2017;125(10):863-71. doi: https://doi.org/10.1111/apm.12722.

DOI: https://doi.org/10.1111/apm.12722

23. Zeng Z-Y, Feng S-D, Chen G-P, Wu J-N. Predictive value of the neutrophil to lymphocyte ratio for disease deterioration and serious adverse outcomes in patients with COVID-19: a prospective cohort study. BMC Infectious Diseases. 2021;21(1):80. doi: 10.1186/s12879-021-05796-3.

DOI: https://doi.org/10.1186/s12879-021-05796-3

24. Grau M, Ibershoff L, Zacher J, Bros J, Tomschi F, Diebold KF, Predel HG, Bloch W. Even patients with mild COVID-19 symptoms after SARS-CoV-2 infection show prolonged altered red blood cell morphology and rheological parameters. J Cell Mol Med. 2022;26(10):3022-30. Epub 2022/04/15. doi: 10.1111/jcmm.17320. PubMed PMID: 35419946; PMCID: PMC9097836.

DOI: https://doi.org/10.1111/jcmm.17320

25. Berzuini A, Bianco C, Migliorini AC, Maggioni M, Valenti L, Prati D. Red blood cell morphology in patients with COVID-19-related anaemia. Blood Transfus. 2021;19(1):34-6. Epub 2020/09/22. doi: 10.2450/2020.0242-20. PubMed PMID: 32955421; PMCID: PMC7850925.

26. Bao C, Tao X, Cui W, Yi B, Pan T, Young KH, Qian W. SARS-CoV-2 induced thrombocytopenia as an important biomarker significantly correlated with abnormal coagulation function, increased intravascular blood clot risk and mortality in COVID-19 patients. Exp Hematol Oncol. 2020;9:16. Epub 2020/07/23. doi: 10.1186/s40164-020-00172-4. PubMed PMID: 32695551; PMCID: PMC7366559.

27. Qu R, Ling Y, Zhang YH, Wei LY, Chen X, Li XM, Liu XY, Liu HM, Guo Z, Ren H, Wang Q. Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19. J Med Virol. 2020;92(9):1533-41. Epub 2020/03/18. doi: 10.1002/jmv.25767. PubMed PMID: 32181903; PMCID: PMC7228291.

DOI: https://doi.org/10.1002/jmv.25767

28. Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clin Chim Acta. 2020;506:145-8. Epub 2020/03/18. doi: 10.1016/j.cca.2020.03.022. PubMed PMID: 32178975; PMCID: PMC7102663.

DOI: https://doi.org/10.1016/j.cca.2020.03.022

29. Hornick A, Tashtish N, Osnard M, Shah B, Bradigan A, Albar Z, Tomalka J, Dalton J, Sharma A, Sekaly RP, Hejal R, Simon DI, Zidar DA, Al-Kindi SG. Anisocytosis is Associated With Short-Term Mortality in COVID-19 and May Reflect Proinflammatory Signature in Uninfected Ambulatory Adults. Pathog Immun. 2020;5(1):312-26. Epub 2020/10/23. doi: 10.20411/pai.v5i1.391. PubMed PMID: 33089037; PMCID: PMC7556412.

DOI: https://doi.org/10.20411/pai.v5i1.391

30. Wang C, Zhang H, Cao X, Deng R, Ye Y, Fu Z, Gou L, Shao F, Li J, Fu W, Zhang X, Ding X, Xiao J, Wu C, Li T, Qi H, Li C, Lu Z. Red cell distribution width (RDW): a prognostic indicator of severe COVID-19. Annals of Translational Medicine. 2020;8(19):1230.

DOI: https://doi.org/10.21037/atm-20-6090

31. Zhang J, Hu J, Huang X, Fu S, Ding D, Tao Z. Association Between Red Blood Cell Distribution Width and COVID-19 Severity in Delta Variant SARS-CoV-2 Infection. Frontiers in Medicine. 2022;9. doi: 10.3389/fmed.2022.837411.

DOI: https://doi.org/10.3389/fmed.2022.837411

32. Pouladzadeh M, Safdarian M, Choghakabodi PM, Amini F, Sokooti A. Validation of red cell distribution width as a COVID-19 severity screening tool. Future Sci OA. 2021;7(7):Fso712. Epub 2021/07/14. doi: 10.2144/fsoa-2020-0199. PubMed PMID: 34254030; PMCID: PMC8056748.

DOI: https://doi.org/10.2144/fsoa-2020-0199

33. Melo AKG, Milby KM, Caparroz ALMA, Pinto ACPN, Santos RRP, Rocha AP, Ferreira GA, Souza VA, Valadares LDA, Vieira RMRA, Pileggi GS, Trevisani VFM. Biomarkers of cytokine storm as red flags for severe and fatal COVID-19 cases: A living systematic review and meta-analysis. PLOS ONE. 2021;16(6):e0253894. doi: 10.1371/journal.pone.0253894.

DOI: https://doi.org/10.1371/journal.pone.0253894

34. Bellmann-Weiler R, Lanser L, Barket R, Rangger L, Schapfl A, Schaber M, Fritsche G, Wöll E, Weiss G. Prevalence and Predictive Value of Anemia and Dysregulated Iron Homeostasis in Patients with COVID-19 Infection. J Clin Med. 2020;9(8). Epub 2020/08/06. doi: 10.3390/jcm9082429. PubMed PMID: 32751400; PMCID: PMC7464087.

DOI: https://doi.org/10.3390/jcm9082429

35. Guan WJ, Ni ZY, Hu Y, Liang WH, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708-20. Epub 2020/02/29. doi: 10.1056/NEJMoa2002032. PubMed PMID: 32109013; PMCID: PMC7092819.

36. Arentz M, Yim E, Klaff L, Lokhandwala S, Riedo FX, Chong M, Lee M. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. Jama. 2020;323(16):1612-4. Epub 2020/03/20. doi: 10.1001/Jama.2020.4326. PubMed PMID: 32191259; PMCID: PMC7082763.

DOI: https://doi.org/10.1001/jama.2020.4326

37. Zinellu A, Paliogiannis P, Carru C, Mangoni AA. Serum amyloid A concentrations, COVID-19 severity and mortality: An updated systematic review and meta-analysis. Int J Infect Dis. 2021;105:668-74. Epub 2021/03/20. doi: 10.1016/j.ijid.2021.03.025. PubMed PMID: 33737133; PMCID: PMC7959678.

DOI: https://doi.org/10.1016/j.ijid.2021.03.025

38. Claise C, Saleh J, Rezek M, Vaulont S, Peyssonnaux C, Edeas M. Low transferrin levels predict heightened inflammation in patients with COVID-19: New insights. Int J Infect Dis. 2022;116:74-9. Epub 2021/12/25. doi: 10.1016/j.ijid.2021.12.340. PubMed PMID: 34952211; PMCID: PMC8688186.

DOI: https://doi.org/10.1016/j.ijid.2021.12.340

39. Soetedjo NNM, Iryaningrum MR, Damara FA, Permadhi I, Sutanto LB, Hartono H, Rasyid H. Prognostic properties of hypoalbuminemia in COVID-19 patients: A systematic review and diagnostic meta-analysis. Clin Nutr ESPEN. 2021;45:120-6. Epub 2021/10/09. doi: 10.1016/j.clnesp.2021.07.003. PubMed PMID: 34620307; PMCID: PMC8288213.

DOI: https://doi.org/10.1016/j.clnesp.2021.07.003

40. Feng R, Wang B, Ma Z, Guo X, Li H, Tang Y, Meng H, Yu H, Peng C, Chu G, Wang X, Teng Y, Zhang Q, Zhu T, Tong Z, Zhao H, Lu H, Qi X. Dynamic change of serum albumin level can predict the prognosis of COVID-19 patients with hypoalbuminemia. Journal of Medical Virology. 2022;94(3):844-6. doi: 10.1002/jmv.27439.

DOI: https://doi.org/10.1002/jmv.27439

41. van Zyl JS, Alam A, Felius J, Youssef RM, Bhakta D, Jack C, Jamil AK, Hall SA, Klintmalm GB, Spak CW, Gottlieb RL. ALLY in fighting COVID-19: magnitude of albumin decline and lymphopenia (ALLY) predict progression to critical disease. J Investig Med. 2021;69(3):710-8. Epub 2021/01/13. doi: 10.1136/jim-2020-001525. PubMed PMID: 33431604; PMCID: PMC7802390.

DOI: https://doi.org/10.1136/jim-2020-001525

42. Lee JS, Shin E-C. The type I interferon response in COVID-19: implications for treatment. Nature Reviews Immunology. 2020;20(10):585-6. doi: 10.1038/s41577-020-00429-3.

DOI: https://doi.org/10.1038/s41577-020-00429-3

43. Hou H, Zhang B, Huang H, Luo Y, Wu S, Tang G, Liu W, Mao L, Mao L, Wang F, Sun Z. Using IL-2R/lymphocytes for predicting the clinical progression of patients with COVID-19. Clin Exp Immunol. 2020;201(1):76-84. Epub 2020/05/05. doi: 10.1111/cei.13450. PubMed PMID: 32365221; PMCID: PMC7267633.

DOI: https://doi.org/10.1111/cei.13450

44. Gubernatorova EO, Gorshkova EA, Polinova AI, Drutskaya MS. IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev. 2020;53:13-24. Epub 2020/06/02. doi: 10.1016/j.cytogfr.2020.05.009. PubMed PMID: 32475759; PMCID: PMC7237916.

DOI: https://doi.org/10.1016/j.cytogfr.2020.05.009

45. Jafrin S, Aziz MA, Islam MS. Elevated Levels of Pleiotropic Interleukin-6 (IL-6) and Interleukin-10 (IL-10) are Critically Involved With the Severity and Mortality of COVID-19: An Updated Longitudinal Meta-Analysis and Systematic Review on 147 Studies. Biomarker Insights. 2022;17:11772719221106600. doi: 10.1177/11772719221106600. PubMed PMID: 35747885.

DOI: https://doi.org/10.1177/11772719221106600

46. McElvaney OJ, Hobbs BD, Qiao D, McElvaney OF, Moll M, McEvoy NL, Clarke J, O’Connor E, Walsh S, Cho MH, Curley GF, McElvaney NG. A linear prognostic score based on the ratio of interleukin-6 to interleukin-10 predicts outcomes in COVID-19. eBioMedicine. 2020;61. doi: 10.1016/j.ebiom.2020.103026.

DOI: https://doi.org/10.1016/j.ebiom.2020.103026

47. Ogawa F, Oi Y, Honzawa H, Misawa N, Takeda T, Kikuchi Y, Fukui R, Tanaka K, Kano D, Kato H, Abe T, Takeuchi I. Severity predictors of COVID-19 in SARS-CoV-2 variant, delta and omicron period; single center study. PLOS ONE. 2022;17(10):e0273134. doi: 10.1371/journal.pone.0273134.

DOI: https://doi.org/10.1371/journal.pone.0273134

48. Shin HW, James A, Feng T, Chow L, Foronjy R. Comparing the demographics and laboratory biomarkers of the COVID-19 Omicron wave and the Alpha wave in a predominantly Afro-Caribbean patient population in New York City. Pneumonia. 2022;14(1):8. doi: 10.1186/s41479-022-00099-w.

DOI: https://doi.org/10.1186/s41479-022-00099-w

49. Park C, Tavakoli-Tabasi S, Sharafkhaneh A, Seligman BJ, Hicken B, Amos CI, Chou A, Razjouyan J. Inflammatory biomarkers differ among hospitalized veterans infected with Alpha, Delta, and Omicron COVID-19 variants [preprint]. PREPRINT. 2023. doi: 10.2139/ssrn.4273917.

50. Löhr P, Schiele S, Arndt TT, Grützner S, Claus R, Römmele C, Müller G, Schmid C, Dennehy KM, Rank A. Impact of age and gender on lymphocyte subset counts in patients with COVID-19. Cytometry Part A.n/a(n/a). doi: 10.1002/cyto.a.24470.

51. Rezaei M, Marjani M, Mahmoudi S, Mortaz E, Mansouri D. Dynamic Changes of Lymphocyte Subsets in the Course of COVID-19. International Archives of Allergy and Immunology. 2021;182(3):254-62. doi: 10.1159/000514202.

DOI: https://doi.org/10.1159/000514202

52. Kuri-Cervantes L, Pampena MB, Meng W, Rosenfeld AM, et al. Comprehensive mapping of immune perturbations associated with severe COVID-19. Science Immunology. 2020;5(49):eabd7114. doi: 10.1126/sciimmunol.abd7114.

DOI: https://doi.org/10.1126/sciimmunol.abd7114

53. Martín-Sánchez E, Garcés JJ, Maia C, Inogés S, López-Díaz de Cerio A, Carmona-Torre F, Marin-Oto M, Alegre F, Molano E, Fernandez-Alonso M, Perez C, Botta C, Zabaleta A, Alcaide AB, Landecho MF, Rua M, Pérez-Warnisher T, Blanco L, Sarvide S, Vilas-Zornoza A, Alignani D, Moreno C, Pineda I, Sogbe M, Argemi J, Paiva B, Yuste JR. Immunological Biomarkers of Fatal COVID-19: A Study of 868 Patients. Frontiers in Immunology. 2021;12. doi: 10.3389/fimmu.2021.659018.

DOI: https://doi.org/10.3389/fimmu.2021.659018

54. Mathew D, Giles JR, Baxter AE, Oldridge DA, et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science. 2020;369(6508):eabc8511. doi: 10.1126/Science.abc8511.

55. Stephenson E, Reynolds G, Botting RA, Calero-Nieto FJ, et al. Single-cell multi-omics analysis of the immune response in COVID-19. Nature Medicine. 2021;27(5):904-16. doi: 10.1038/s41591-021-01329-2.

56. Kreutmair S, Unger S, Núñez NG, Ingelfinger F, Alberti C, De Feo D, Krishnarajah S, Kauffmann M, Friebel E, Babaei S, Gaborit B, Lutz M, Jurado NP, Malek NP, Goepel S, Rosenberger P, Häberle HA, Ayoub I, Al-Hajj S, Nilsson J, Claassen M, Liblau R, Martin-Blondel G, Bitzer M, Roquilly A, Becher B. Distinct immunological signatures discriminate severe COVID-19 from non-SARS-CoV-2-driven critical Pneumonia. Immunity. 2021;54(7):1578-93.e5. doi: 10.1016/j.immuni.2021.05.002.

DOI: https://doi.org/10.1016/j.immuni.2021.05.002

57. Odak I, Barros-Martins J, Bošnjak B, Stahl K, David S, Wiesner O, Busch M, Hoeper MM, Pink I, Welte T, Cornberg M, Stoll M, Goudeva L, Blasczyk R, Ganser A, Prinz I, Förster R, Koenecke C, Schultze-Florey CR. Reappearance of effector T cells is associated with recovery from COVID-19. EBioMedicine. 2020;57:102885. doi: 10.1016/j.ebiom.2020.102885.

DOI: https://doi.org/10.1016/j.ebiom.2020.102885

58. Park JJ, Lee KAV, Lam SZ, Moon KS, Fang Z, Chen S. Machine learning identifies T cell receptor repertoire signatures associated with COVID-19 severity. Communications Biology. 2023;6(1):76. doi: 10.1038/s42003-023-04447-4.

DOI: https://doi.org/10.1038/s42003-023-04447-4

59. Minervina AA, Pogorelyy MV, Kirk AM, Crawford JC, et al. SARS-CoV-2 antigen exposure history shapes phenotypes and specificity of memory CD8+ T cells. Nature Immunology. 2022;23(5):781-90. doi: 10.1038/s41590-022-01184-4.

60. Flament H, Rouland M, Beaudoin L, Toubal A, et al. Outcome of SARS-CoV-2 infection is linked to MAIT cell activation and cytotoxicity. Nature Immunology. 2021;22(3):322-35. doi: 10.1038/s41590-021-00870-z.

DOI: https://doi.org/10.1038/s41590-021-00870-z

61. Parrot T, Gorin J-B, Ponzetta A, Maleki KT, et al. MAIT cell activation and dynamics associated with COVID-19 disease severity. Science Immunology. 2020;5(51):eabe1670. doi: 10.1126/sciimmunol.abe1670.

62. Jouan Y, Guillon A, Gonzalez L, Perez Y, Boisseau C, Ehrmann S, Ferreira M, Daix T, Jeannet R, François B, Dequin P-F, Si-Tahar M, Baranek T, Paget C. Phenotypical and functional alteration of unconventional T cells in severe COVID-19 patients. Journal of Experimental Medicine. 2020;217(12). doi: 10.1084/jem.20200872.

DOI: https://doi.org/10.1084/jem.20200872

63. Zhang J-Y, Wang X-M, Xing X, Xu Z, Zhang C, Song J-W, Fan X, Xia P, Fu J-L, Wang S-Y, Xu R-N, Dai X-P, Shi L, Huang L, Jiang T-J, Shi M, Zhang Y, Zumla A, Maeurer M, Bai F, Wang F-S. Single-cell landscape of immunological responses in patients with COVID-19. Nature Immunology. 2020;21(9):1107-18. doi: 10.1038/s41590-020-0762-x.

64. Ren X, Wen W, Fan X, Hou W, et al. COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. Cell. 2021;184(7):1895-913.e19. doi: 10.1016/j.cell.2021.01.053.

65. Sosa-Hernández VA, Torres-Ruíz J, Cervantes-Díaz R, Romero-Ramírez S, Páez-Franco JC, Meza-Sánchez DE, Juárez-Vega G, Pérez-Fragoso A, Ortiz-Navarrete V, Ponce-de-León A, Llorente L, Berrón-Ruiz L, Mejía-Domínguez NR, Gómez-Martín D, Maravillas-Montero JL. B Cell Subsets as Severity-Associated Signatures in COVID-19 Patients. Frontiers in Immunology. 2020;11. doi: 10.3389/fimmu.2020.611004.

DOI: https://doi.org/10.3389/fimmu.2020.611004

66. Woodruff MC, Ramonell RP, Haddad NS, Anam FA, et al. Dysregulated naive B cells and de novo autoreactivity in severe COVID-19. Nature. 2022;611(7934):139-47. doi: 10.1038/s41586-022-05273-0.

DOI: https://doi.org/10.1038/s41586-022-05273-0

67. Woodruff MC, Ramonell RP, Nguyen DC, Cashman KS, et al. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nature Immunology. 2020;21(12):1506-16. doi: 10.1038/s41590-020-00814-z.

DOI: https://doi.org/10.1038/s41590-020-00814-z

68. Schultheiß C, Paschold L, Willscher E, Simnica D, Wöstemeier A, Muscate F, Wass M, Eisenmann S, Dutzmann J, Keyßer G, Gagliani N, Binder M. Maturation trajectories and transcriptional landscape of plasmablasts and autoreactive B cells in COVID-19. iScience. 2021;24(11):103325. doi: 10.1016/j.isci.2021.103325.

DOI: https://doi.org/10.1016/j.isci.2021.103325

69. Kim G, Kim DH, Oh H, Bae S, Kwon J, Kim M-J, Lee E, Hwang E-H, Jung H, Koo B-S, Baek SH, Kang P, An YJ, Park J-H, Park J-H, Lyoo K-S, Ryu C-M, Kim S-H, Hong JJ. Germinal Center-Induced Immunity Is Correlated With Protection Against SARS-CoV-2 Reinfection But Not Lung Damage. The Journal of Infectious Diseases. 2021;224(11):1861-72. doi: 10.1093/infdis/jiab535.

DOI: https://doi.org/10.1093/infdis/jiab535

70. Kaneko N, Kuo HH, Boucau J, Farmer JR, et al. Loss of Bcl-6-Expressing T Follicular Helper Cells and Germinal Centers in COVID-19. Cell. 2020;183(1):143-57.e13. Epub 2020/09/03. doi: 10.1016/j.cell.2020.08.025. PubMed PMID: 32877699; PMCID: PMC7437499.

DOI: https://doi.org/10.1016/j.cell.2020.08.025

71. Hoehn KB, Ramanathan P, Unterman A, Sumida TS, Asashima H, Hafler DA, Kaminski N, Dela Cruz CS, Sealfon SC, Bukreyev A, Kleinstein SH. Cutting Edge: Distinct B Cell Repertoires Characterize Patients with Mild and Severe COVID-19. The Journal of Immunology. 2021;206(12):2785-90. doi: 10.4049/jimmunol.2100135.

DOI: https://doi.org/10.4049/jimmunol.2100135

72. Röltgen K, Nielsen SCA, Silva O, Younes SF, et al. Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell. 2022;185(6):1025-40.e14. doi: 10.1016/j.cell.2022.01.018.

DOI: https://doi.org/10.1016/j.cell.2022.01.018

73. Wilk AJ, Rustagi A, Zhao NQ, Roque J, Martínez-Colón GJ, McKechnie JL, Ivison GT, Ranganath T, Vergara R, Hollis T, Simpson LJ, Grant P, Subramanian A, Rogers AJ, Blish CA. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat Med. 2020;26(7):1070-6. Epub 2020/06/10. doi: 10.1038/s41591-020-0944-y. PubMed PMID: 32514174; PMCID: PMC7382903.

DOI: https://doi.org/10.1038/s41591-020-0944-y

74. Schulte-Schrepping J, Reusch N, Paclik D, Baßler K, et al. Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment. Cell. 2020;182(6):1419-40.e23. doi: 10.1016/j.cell.2020.08.001.

75. Silvin A, Chapuis N, Dunsmore G, Goubet A-G, et al. Elevated Calprotectin and Abnormal Myeloid Cell Subsets Discriminate Severe from Mild COVID-19. Cell. 2020;182(6):1401-18.e18. doi: 10.1016/j.cell.2020.08.002.

DOI: https://doi.org/10.1016/j.cell.2020.08.002

76. Cirovic B, Schönheit J, Kowenz-Leutz E, Ivanovska J, Klement C, Pronina N, Bégay V, Leutz A. C/EBP-Induced Transdifferentiation Reveals Granulocyte-Macrophage Precursor-like Plasticity of B Cells. Stem Cell Reports. 2017;8(2):346-59. doi: 10.1016/j.stemcr.2016.12.015.

DOI: https://doi.org/10.1016/j.stemcr.2016.12.015

77. Funderburg NT, Zidar DA, Shive C, Lioi A, Mudd J, Musselwhite LW, Simon DI, Costa MA, Rodriguez B, Sieg SF, Lederman MM. Shared monocyte subset phenotypes in HIV-1 infection and in uninfected subjects with acute coronary syndrome. Blood. 2012;120(23):4599-608. Epub 2012/10/16. doi: 10.1182/blood-2012-05-433946. PubMed PMID: 23065151; PMCID: PMC3512236.

DOI: https://doi.org/10.1182/blood-2012-05-433946

78. de Bruin S, Bos LD, van Roon MA, Tuip-de Boer AM, et al. Clinical features and prognostic factors in Covid-19: A prospective cohort study. eBioMedicine. 2021;67. doi: 10.1016/j.ebiom.2021.103378.

DOI: https://doi.org/10.1016/j.ebiom.2021.103378

79. Messner CB, Demichev V, Wendisch D, Michalick L, et al. Ultra-High-Throughput Clinical Proteomics Reveals Classifiers of COVID-19 Infection. Cell Systems. 2020;11(1):11-24.e4. doi: 10.1016/j.cels.2020.05.012.

DOI: https://doi.org/10.1016/j.cels.2020.05.012

80. Wang Z, Cryar A, Lemke O, Tober-Lau P, Ludwig D, Helbig ET, Hippenstiel S, Sander L-E, Blake D, Lane CS, Sayers RL, Mueller C, Zeiser J, Townsend S, Demichev V, Mülleder M, Kurth F, Sirka E, Hartl J, Ralser M. A multiplex protein panel assay for severity prediction and outcome prognosis in patients with COVID-19: An observational multi-cohort study. eClinicalMedicine. 2022;49. doi: 10.1016/j.eclinm.2022.101495.

DOI: https://doi.org/10.1016/j.eclinm.2022.101495

81. Demichev V, Tober-Lau P, Lemke O, Nazarenko T, et al. A time-resolved proteomic and prognostic map of COVID-19. Cell Systems. 2021;12(8):780-94.e7. doi: 10.1016/j.cels.2021.05.005.

82. Shen B, Yi X, Sun Y, Bi X, et al. Proteomic and Metabolomic Characterization of COVID-19 Patient Sera. Cell. 2020;182(1):59-72.e15. doi: 10.1016/j.cell.2020.05.032.

DOI: https://doi.org/10.1016/j.cell.2020.05.032

83. Bastard P, Gervais A, Le Voyer T, Rosain J, et al. Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Science Immunology. 2021;6(62):eabl4340. doi: 10.1126/sciimmunol.abl4340.

84. Bastard P, Orlova E, Sozaeva L, Lévy R, et al. Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1. Journal of Experimental Medicine. 2021;218(7). doi: 10.1084/jem.20210554.

85. Bastard P, Rosen LB, Zhang Q, Michailidis E, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585. doi: 10.1126/Science.abd4585.

86. Koning R, Bastard P, Casanova J-L, Brouwer MC, et al. Autoantibodies against type I interferons are associated with multi-organ failure in COVID-19 patients. Intensive Care Medicine. 2021;47(6):704-6. doi: 10.1007/s00134-021-06392-4.

DOI: https://doi.org/10.1007/s00134-021-06392-4

87. Wang EY, Mao T, Klein J, Dai Y, et al. Diverse functional autoantibodies in patients with COVID-19. Nature. 2021;595(7866):283-8. doi: 10.1038/s41586-021-03631-y.

88. Mathian A, Breillat P, Dorgham K, Bastard P, et al. Lower disease activity but higher risk of severe COVID-19 and herpes zoster in patients with systemic lupus erythematosus with pre-existing autoantibodies neutralising IFN-α. Annals of the Rheumatic Diseases. 2022;81(12):1695-703. doi: 10.1136/ard-2022-222549.

DOI: https://doi.org/10.1136/ard-2022-222549

89. Manry J, Bastard P, Gervais A, Le Voyer T, et al. The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. Proceedings of the National Academy of Sciences. 2022;119(21):e2200413119. doi: 10.1073/pnas.2200413119.

90. Briquez PS, Rouhani SJ, Yu J, Pyzer AR, Trujillo J, Dugan HL, Stamper CT, Changrob S, Sperling AI, Wilson PC, Gajewski TF, Hubbell JA, Swartz MA. Severe COVID-19 induces autoantibodies against angiotensin II that correlate with blood pressure dysregulation and disease severity. Science Advances. 2022;8(40):eabn3777. doi: 10.1126/sciadv.abn3777.

DOI: https://doi.org/10.1126/sciadv.abn3777

91. Zuo Y, Yalavarthi S, Navaz SA, Hoy CK, Harbaugh A, Gockman K, Zuo M, Madison JA, Shi H, Kanthi Y, Knight JS. Autoantibodies stabilize neutrophil extracellular traps in COVID-19. JCI Insight. 2021;6(15). doi: 10.1172/jci.insight.150111.

92. Chang SE, Feng A, Meng W, Apostolidis SA, et al. New-onset IgG autoantibodies in hospitalized patients with COVID-19. Nature Communications. 2021;12(1):5417. doi: 10.1038/s41467-021-25509-3.

93. Son K, Jamil R, Chowdhury A, Mukherjee M, Venegas C, Miyasaki K, Zhang K, Patel Z, Salter B, Yuen ACY, Lau KS-K, Cowbrough B, Radford K, Huang C, Kjarsgaard M, Dvorkin-Gheva A, Smith J, Li Q-Z, Waserman S, Ryerson CJ, Nair P, Ho T, Balakrishnan N, Nazy I, Bowdish DM, Svenningsen S, Carlsten C, Mukherjee M. Circulating anti-nuclear autoantibodies in COVID-19 survivors predict long-COVID symptoms. European Respiratory Journal. 2022:2200970. doi: 10.1183/13993003.00970-2022.

DOI: https://doi.org/10.1183/13993003.00970-2022

94. Vlachoyiannopoulos PG, Magira E, Alexopoulos H, Jahaj E, Theophilopoulou K, Kotanidou A, Tzioufas AG. Autoantibodies related to systemic autoimmune rheumatic diseases in severely ill patients with COVID-19. Annals of the Rheumatic Diseases. 2020;79(12):1661-3. doi: 10.1136/annrheumdis-2020-218009.

DOI: https://doi.org/10.1136/annrheumdis-2020-218009

95. Taha M, Samavati L. Antiphospholipid antibodies in COVID-19: a meta-analysis and systematic review. RMD Open. 2021;7(2):e001580. doi: 10.1136/rmdopen-2021-001580.

DOI: https://doi.org/10.1136/rmdopen-2021-001580

96. Zuo Y, Estes SK, Ali RA, Gandhi AA, Yalavarthi S, Shi H, Sule G, Gockman K, Madison JA, Zuo M, Yadav V, Wang J, Woodard W, Lezak SP, Lugogo NL, Smith SA, Morrissey JH, Kanthi Y, Knight JS. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Science Translational Medicine. 2020;12(570):eabd3876. doi: 10.1126/scitranslmed.abd3876.

DOI: https://doi.org/10.1126/scitranslmed.abd3876

97. Serrano M, Espinosa G, Serrano A, Cervera R. COVID-19 and the antiphospholipid syndrome. Autoimmun Rev. 2022;21(12):103206. Epub 2022/10/05. doi: 10.1016/j.autrev.2022.103206. PubMed PMID: 36195247; PMCID: PMC9527199.

DOI: https://doi.org/10.1016/j.autrev.2022.103206

98. Meroni PL, Borghi MO. Antiphospholipid antibodies and COVID-19 thrombotic vasculopathy: one swallow does not make a summer. Annals of the Rheumatic Diseases. 2021;80(9):1105-7. doi: 10.1136/annrheumdis-2021-220520.

DOI: https://doi.org/10.1136/annrheumdis-2021-220520

99. Barzilai O, Ram M, Shoenfeld Y. Viral infection can induce the production of autoantibodies. Curr Opin Rheumatol. 2007;19(6):636-43. Epub 2007/10/06. doi: 10.1097/BOR.0b013e3282f0ad25. PubMed PMID: 17917546.

DOI: https://doi.org/10.1097/BOR.0b013e3282f0ad25

100. Voiriot G, Dorgham K, Bachelot G, Fajac A, Morand-Joubert L, Parizot C, Gerotziafas G, Farabos D, Trugnan G, Eguether T, Blayau C, Djibré M, Elabbadi A, Gibelin A, Labbé V, Parrot A, Turpin M, Cadranel J, Gorochov G, Fartoukh M, Lamazière A. Identification of bronchoalveolar and blood immune-inflammatory biomarker signature associated with poor 28-day outcome in critically ill COVID-19 patients. Scientific Reports. 2022;12(1):9502. doi: 10.1038/s41598-022-13179-0.

DOI: https://doi.org/10.1038/s41598-022-13179-0

101. Gysan M, Lehmann A, Bernitzky D, Christopher M, Zech A, Prosch H, Idzko M, Gompelmann D. Bronchoalveolar lavage fluid characteristics in patients with persistent symptoms following COVID-19 infection. European Respiratory Journal. 2022;60(suppl 66):3615. doi: 10.1183/13993003.congress-2022.3615.

DOI: https://doi.org/10.1183/13993003.congress-2022.3615

102. Zeng HL, Chen D, Yan J, Yang Q, Han QQ, Li SS, Cheng L. Proteomic characteristics of bronchoalveolar lavage fluid in critical COVID-19 patients. Febs j. 2021;288(17):5190-200. Epub 2020/10/25. doi: 10.1111/febs.15609. PubMed PMID: 33098359.

DOI: https://doi.org/10.1111/febs.15609

103. Hua-Huy T, Günther S, Lorut C, Subileau M, Aubourg F, Morbieu C, Marey J, Texereau J, Fajac I, Mouthon L, Roche N, Dinh-Xuan AT. Distal Lung Inflammation Assessed by Alveolar Concentration of Nitric Oxide Is an Individualised Biomarker of Severe COVID-19 Pneumonia. J Pers Med. 2022;12(10). Epub 2022/10/28. doi: 10.3390/jpm12101631. PubMed PMID: 36294770; PMCID: PMC9605039.

DOI: https://doi.org/10.3390/jpm12101631

104. Kamenshchikov NO, Berra L, Carroll RW. Therapeutic Effects of Inhaled Nitric Oxide Therapy in COVID-19 Patients. Biomedicines. 2022;10(2). Epub 2022/02/26. doi: 10.3390/biomedicines10020369. PubMed PMID: 35203578; PMCID: PMC8962307.

DOI: https://doi.org/10.3390/biomedicines10020369

105. Adriana DN, Sugihartono T, Nusi IA, Setiawan PB, Purbayu H, Maimunah U, Kholili U, Widodo B, Thamrin H, Vidyani A, Maulahela H, Yamaoka Y, Miftahussurur M. Role of fecal calprotectin as a hypoxic intestinal damage biomarker in COVID-19 patients. Gut Pathog. 2022;14(1):34. Epub 2022/08/10. doi: 10.1186/s13099-022-00507-y. PubMed PMID: 35945626; PMCID: PMC9360717.

DOI: https://doi.org/10.1186/s13099-022-00507-y

106. Menez S, Moledina DG, Thiessen-Philbrook H, Wilson FP, Obeid W, Simonov M, Yamamoto Y, Corona-Villalobos CP, Chang C, Garibaldi BT, Clarke W, Farhadian S, Dela Cruz C, Coca SG, Parikh CR. Prognostic Significance of Urinary Biomarkers in Patients Hospitalized With COVID-19. Am J Kidney Dis. 2022;79(2):257-67.e1. Epub 2021/10/29. doi: 10.1053/j.ajkd.2021.09.008. PubMed PMID: 34710516; PMCID: PMC8542781.

DOI: https://doi.org/10.1053/j.ajkd.2021.09.008

107. Yan Y, Jiang X, Wang X, Liu B, Ding H, Jiang M, Yang Z, Dai Y, Ding D, Yu H, Zhang S, Liu J, Sha M, Lui C, Qiu Y, Lu H, Hu Q. CCL28 mucosal expression in SARS-CoV-2-infected patients with diarrhea in relation to disease severity. Journal of Infection. 2021;82(1):e19-e21. doi: 10.1016/j.jinf.2020.08.042.

DOI: https://doi.org/10.1016/j.jinf.2020.08.042

108. Guasp M, Muñoz-Sánchez G, Martínez-Hernández E, Santana D, Carbayo Á, Naranjo L, Bolós U, Framil M, Saiz A, Balasa M, Ruiz-García R, Sánchez-Valle R, TBN-CSG. CSF Biomarkers in COVID-19 Associated Encephalopathy and Encephalitis Predict Long-Term Outcome. Frontiers in Immunology. 2022;13. doi: 10.3389/fimmu.2022.866153.

DOI: https://doi.org/10.3389/fimmu.2022.866153

109. Edén A, Grahn A, Bremell D, Aghvanyan A, Bathala P, Fuchs D, Gostner J, Hagberg L, Kanberg N, Kanjananimmanont S, Lindh M, Misaghian S, Nilsson S, Schöll M, Sigal G, Stentoft E, Studahl M, Yilmaz A, Wang M, Stengelin M, Zetterberg H, Gisslén M. Viral Antigen and Inflammatory Biomarkers in Cerebrospinal Fluid in Patients With COVID-19 Infection and Neurologic Symptoms Compared With Control Participants Without Infection or Neurologic Symptoms. JAMA Network Open. 2022;5(5):e2213253-e. doi: 10.1001/jamanetworkopen.2022.13253.

DOI: https://doi.org/10.1001/jamanetworkopen.2022.13253

110. Shiri I, Salimi Y, Pakbin M, Hajianfar G, et al. COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients. Comput Biol Med. 2022;145:105467. Epub 2022/04/05. doi: 10.1016/j.compbiomed.2022.105467. PubMed PMID: 35378436; PMCID: PMC8964015.

DOI: https://doi.org/10.1016/j.compbiomed.2022.105467

111. Chen HJ, Mao L, Chen Y, Yuan L, Wang F, Li X, Cai Q, Qiu J, Chen F. Machine learning-based CT radiomics model distinguishes COVID-19 from non-COVID-19 Pneumonia. BMC Infect Dis. 2021;21(1):931. Epub 2021/09/10. doi: 10.1186/s12879-021-06614-6. PubMed PMID: 34496794; PMCID: PMC8424152.

112. Yang N, Liu F, Li C, Xiao W, Xie S, Yuan S, Zuo W, Ma X, Jiang G. Diagnostic classification of coronavirus disease 2019 (COVID-19) and other pneumonias using radiomics features in CT chest images. Scientific Reports. 2021;11(1):17885. doi: 10.1038/s41598-021-97497-9.

DOI: https://doi.org/10.1038/s41598-021-97497-9

113. Wang D, Huang C, Bao S, Fan T, Sun Z, Wang Y, Jiang H, Wang S. Study on the prognosis predictive model of COVID-19 patients based on CT radiomics. Scientific Reports. 2021;11(1):11591. doi: 10.1038/s41598-021-90991-0.

DOI: https://doi.org/10.1038/s41598-021-90991-0

114. Vaidya P, Alilou M, Hiremath A, Gupta A, Bera K, Furin J, Armitage K, Gilkeson R, Yuan L, Fu P, Lu C, Ji M, Madabhushi A. An End-to-End Integrated Clinical and CT-Based Radiomics Nomogram for Predicting Disease Severity and Need for Ventilator Support in COVID-19 Patients: A Large Multisite Retrospective Study. Frontiers in Radiology. 2022;2. doi: 10.3389/fradi.2022.781536.

DOI: https://doi.org/10.3389/fradi.2022.781536

115. Modanwal G, Al-Kindi S, Walker J, Dhamdhere R, Yuan L, Ji M, Lu C, Fu P, Rajagopalan S, Madabhushi A. Deep-learning-based hepatic fat assessment (DeHFt) on non-contrast chest CT and its association with disease severity in COVID-19 infections: A multi-site retrospective study. eBioMedicine. 2022;85. doi: 10.1016/j.ebiom.2022.104315.

DOI: https://doi.org/10.1016/j.ebiom.2022.104315

116. Sheele JM, Lalljie AV, Fletcher S, Heckman M, Hochwald A, Simon LV. Ability of emergency medicine clinicians to predict COVID-19 in their patients. Am J Emerg Med. 2022;56:329-31. Epub 2021/09/13. doi: 10.1016/j.ajem.2021.09.001. PubMed PMID: 34509327; PMCID: PMC8414838.

DOI: https://doi.org/10.1016/j.ajem.2021.09.001

117. Soto-Mota A, Marfil-Garza BA, Castiello-de Obeso S, Martinez Rodriguez EJ, Carrillo Vazquez DA, Tadeo-Espinoza H, Guerrero Cabrera JP, Dardon-Fierro FE, Escobar-Valderrama JM, Alanis-Mendizabal J, Gutierrez-Mejia J. Prospective predictive performance comparison between clinical gestalt and validated COVID-19 mortality scores. J Investig Med. 2022;70(2):415-20. Epub 2021/10/09. doi: 10.1136/jim-2021-002037. PubMed PMID: 34620707; PMCID: PMC8507412.

DOI: https://doi.org/10.1136/jim-2021-002037

118. Romero Starke K, Reissig D, Petereit-Haack G, Schmauder S, Nienhaus A, Seidler A. The isolated effect of age on the risk of COVID-19 severe outcomes: a systematic review with meta-analysis. BMJ Global Health. 2021;6(12):e006434. doi: 10.1136/bmjgh-2021-006434.

DOI: https://doi.org/10.1136/bmjgh-2021-006434

119. Ahmad FB CJ, Minino A, Anderson RN. Provisional Mortality Data - United States, 2020. MMWR Morb Mortal Wkly Rep. 2021;70:519-22. doi: 10.15585/mmwr.mm7014e1.

DOI: https://doi.org/10.15585/mmwr.mm7014e1

120. Mogilenko DA, Shchukina I, Artyomov MN. Immune ageing at single-cell resolution. Nature Reviews Immunology. 2022;22(8):484-98. doi: 10.1038/s41577-021-00646-4.

DOI: https://doi.org/10.1038/s41577-021-00646-4

121. Lowery EM, Brubaker AL, Kuhlmann E, Kovacs EJ. The aging lung. Clin Interv Aging. 2013;8:1489-96. Epub 2013/11/16. doi: 10.2147/cia.S51152. PubMed PMID: 24235821; PMCID: PMC3825547.

122. Paneni F, Diaz Cañestro C, Libby P, Lüscher TF, Camici GG. The Aging Cardiovascular System: Understanding It at the Cellular and Clinical Levels. Journal of the American College of Cardiology. 2017;69(15):1952-67. doi: 10.1016/j.jacc.2017.01.064.

DOI: https://doi.org/10.1016/j.jacc.2017.01.064

123. Underlying medical conditions associated with high risk for severe COVID-19: Information for healthcare professionals: Centers for Disease Control and Prevention; [cited 2022 December 18]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/underlyingconditions.html.

124. Pennington AF, Kompaniyets L, Summers AD, Danielson ML, Goodman AB, Chevinsky JR, Preston LE, Schieber LZ, Namulanda G, Courtney J, Strosnider HM, Boehmer TK, Mac Kenzie WR, Baggs J, Gundlapalli AV. Risk of Clinical Severity by Age and Race/Ethnicity Among Adults Hospitalized for COVID-19—United States, March–September 2020. Open Forum Infectious Diseases. 2020;8(2). doi: 10.1093/ofid/ofaa638.

DOI: https://doi.org/10.1093/ofid/ofaa638

125. Kompaniyets L, Pennington AF, Goodman AB, Rosenblum HG, Belay B, Ko JY, Chevinsky JR, Schieber LZ, Summers AD, Lavery AM, Preston LE, Danielson ML, Cui Z, Namulanda G, Yusuf H, Mac Kenzie WR, Wong KK, Baggs J, Boehmer TK, Gundlapalli AV. Underlying Medical Conditions and Severe Illness Among 540,667 Adults Hospitalized With COVID-19, March 2020-March 2021. Prev Chronic Dis. 2021;18:E66. Epub 2021/07/02. doi: 10.5888/pcd18.210123. PubMed PMID: 34197283; PMCID: PMC8269743.

DOI: https://doi.org/10.5888/pcd18.210123

126. Magesh S, John D, Li WT, Li Y, Mattingly-app A, Jain S, Chang EY, Ongkeko WM. Disparities in COVID-19 Outcomes by Race, Ethnicity, and Socioeconomic Status: A Systematic Review and Meta-analysis. JAMA Network Open. 2021;4(11):e2134147-e. doi: 10.1001/jamanetworkopen.2021.34147.

DOI: https://doi.org/10.1001/jamanetworkopen.2021.34147

127. Pairo-Castineira E, Clohisey S, Klaric L, Bretherick AD, et al. Genetic mechanisms of critical illness in COVID-19. Nature. 2021;591(7848):92-8. doi: 10.1038/s41586-020-03065-y.

DOI: https://doi.org/10.1038/s41586-020-03065-y

128. Niemi MEK, Karjalainen J, Liao RG, Neale BM, et al. Mapping the human genetic architecture of COVID-19. Nature. 2021;600(7889):472-7. doi: 10.1038/s41586-021-03767-x.

129. Kousathanas A, Pairo-Castineira E, Rawlik K, Stuckey A, et al. Whole-genome sequencing reveals host factors underlying critical COVID-19. Nature. 2022;607(7917):97-103. Epub 2022/03/08. doi: 10.1038/s41586-022-04576-6. PubMed PMID: 35255492; PMCID: PMC9259496.

130. Dite GS, Murphy NM, Allman R. Development and validation of a clinical and genetic model for predicting risk of severe COVID-19. Epidemiology and Infection. 2021;149:e162. Epub 2021/07/02. doi: 10.1017/S095026882100145X.

131. Crossfield SSR, Chaddock NJM, Iles MM, Pujades-Rodriguez M, Morgan AW. Interplay between demographic, clinical and polygenic risk factors for severe COVID-19. Int J Epidemiol. 2022;51(5):1384-95. Epub 2022/07/01. doi: 10.1093/ije/dyac137. PubMed PMID: 35770811; PMCID: PMC9278202.

DOI: https://doi.org/10.1093/ije/dyac137

132. Verma A, Tsao NL, Thomann LO, Ho Y-L, et al. A Phenome-Wide Association Study of genes associated with COVID-19 severity reveals shared genetics with complex diseases in the Million Veteran Program. PLOS Genetics. 2022;18(4):e1010113. doi: 10.1371/journal.pgen.1010113.

DOI: https://doi.org/10.1371/journal.pgen.1010113

133. Weber S, Kehl V, Erber J, Wagner KI, Jetzlsperger AM, Burrell T, Schober K, Schommers P, Augustin M, Crowell CS, Gerhard M, Winter C, Moosmann A, Spinner CD, Protzer U, Hoffmann D, D’Ippolito E, Busch DH. CMV seropositivity is a potential novel risk factor for severe COVID-19 in non-geriatric patients. PLOS ONE. 2022;17(5):e0268530. Epub 2022/05/26. doi: 10.1371/journal.pone.0268530. PubMed PMID: 35613127; PMCID: PMC9132318.

DOI: https://doi.org/10.1371/journal.pone.0268530

134. Alanio C, Verma A, Mathew D, Gouma S, Liang G, Dunn T, Oldridge DA, Weaver J, Kuri-Cervantes L, Pampena MB, Betts MR, Collman RG, Bushman FD, Meyer NJ, Hensley SE, Rader D, Wherry EJ, Unit TUCP. Cytomegalovirus Latent Infection is Associated with an Increased Risk of COVID-19-Related Hospitalization. The Journal of Infectious Diseases. 2022;226(3):463-73. doi: 10.1093/infdis/jiac020.

DOI: https://doi.org/10.1093/infdis/jiac020

135. Naendrup J-H, Garcia Borrega J, Eichenauer DA, Shimabukuro-Vornhagen A, Kochanek M, Böll B. Reactivation of EBV and CMV in Severe COVID-19—Epiphenomena or Trigger of Hyperinflammation in Need of Treatment? A Large Case Series of Critically ill Patients. Journal of Intensive Care Medicine. 2022;37(9):1152-8. doi: 10.1177/08850666211053990. PubMed PMID: 34791940.

DOI: https://doi.org/10.1177/08850666211053990

136. Freeman ML, Oyebanji OA, Moisi D, Payne M, Sheehan ML, Balazs AB, Bosch J, King CL, Gravenstein S, Lederman MM, Canaday DH. Association of cytomegalovirus serostatus with SARS-CoV-2 vaccine responsiveness in nursing home residents and healthcare workers. Open Forum Infectious Diseases. 2023. doi: 10.1093/ofid/ofad063.

DOI: https://doi.org/10.1093/ofid/ofad063

137. Meng M, Zhang S, Dong X, Sun W, Deng Y, Li W, Li R, Annane D, Wu Z, Chen D. COVID-19 associated EBV reactivation and effects of ganciclovir treatment. Immun Inflamm Dis. 2022;10(4):e597. Epub 2022/03/30. doi: 10.1002/iid3.597. PubMed PMID: 35349757; PMCID: PMC8959425.

138. Villafuerte DB, Lavrynenko O, Qazi R, Passeri MF, Sanchez FL. Chronic active Epstein-Barr exacerbated by COVID-19 co-infection. Int J Infect Dis. 2022;122:976-8. Epub 2022/07/26. doi: 10.1016/j.ijid.2022.07.046. PubMed PMID: 35872097; PMCID: PMC9303058.

DOI: https://doi.org/10.1016/j.ijid.2022.07.046

139. Chen T, Song J, Liu H, Zheng H, Chen C. Positive Epstein–Barr virus detection in coronavirus disease 2019 (COVID-19) patients. Scientific Reports. 2021;11(1):10902. doi: 10.1038/s41598-021-90351-y.

DOI: https://doi.org/10.1038/s41598-021-90351-y

140. Klein J, Wood J, Jaycox J, Lu P, et al. Distinguishing features of Long COVID identified through immune profiling. medRxiv. 2022:2022.08.09.22278592. doi: 10.1101/2022.08.09.22278592.

141. Peluso MJ, Deveau T-M, Munter SE, Ryder DM, et al. Impact of pre-existing chronic viral infection and reactivation on the development of long COVID. The Journal of Clinical Investigation. 2022. doi: 10.1172/JCI163669.

142. Zubchenko S, Kril I, Nadizhko O, Matsyura O, Chopyak V. Herpesvirus infections and post-COVID-19 manifestations: a pilot observational study. Rheumatol Int. 2022;42(9):1523-30. Epub 2022/06/02. doi: 10.1007/s00296-022-05146-9. PubMed PMID: 35650445; PMCID: PMC9159383.

DOI: https://doi.org/10.1007/s00296-022-05146-9

143. Meyer A, Buetti N, Houhou-Fidouh N, Patrier J, Abdel-Nabey M, Jaquet P, Presente S, Girard T, Sayagh F, Ruckly S, Wicky P-H, de Montmollin E, Bouadma L, Sonneville R, Descamps D, Timsit J-F. HSV-1 reactivation is associated with an increased risk of mortality and pneumonia in critically ill COVID-19 patients. Critical Care. 2021;25(1):417. doi: 10.1186/s13054-021-03843-8.

DOI: https://doi.org/10.1186/s13054-021-03843-8

144. Carneiro VCdS, Alves-Leon SV, Sarmento DJdS, Coelho WLdCNP, Moreira OdC, Salvio AL, Ramos CHF, Ramos Filho CHF, Marques CAB, da Costa Gonçalves JP, Leon LAA, de Paula VS. Herpesvirus and neurological manifestations in patients with severe coronavirus disease. Virology Journal. 2022;19(1):101. doi: 10.1186/s12985-022-01828-9.

DOI: https://doi.org/10.1186/s12985-022-01828-9

145. Chen J, Song J, Dai L, Post SR, Qin Z. SARS-CoV-2 infection and lytic reactivation of herpesviruses: A potential threat in the postpandemic era? Journal of Medical Virology. 2022;94(11):5103-11. doi: 10.1002/jmv.27994.

DOI: https://doi.org/10.1002/jmv.27994

146. Loyal L, Braun J, Henze L, Kruse B, et al. Cross-reactive CD4<sup>+</sup> T cells enhance SARS-CoV-2 immune responses upon infection and vaccination. Science. 2021;374(6564):eabh1823. doi: 10.1126/Science.abh1823.

147. Mateus J, Grifoni A, Tarke A, Sidney J, Ramirez SI, Dan JM, Burger ZC, Rawlings SA, Smith DM, Phillips E, Mallal S, Lammers M, Rubiro P, Quiambao L, Sutherland A, Yu ED, da Silva Antunes R, Greenbaum J, Frazier A, Markmann AJ, Premkumar L, de Silva A, Peters B, Crotty S, Sette A, Weiskopf D. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science. 2020;370(6512):89-94. Epub 20200804. doi: 10.1126/Science.abd3871. PubMed PMID: 32753554; PMCID: PMC7574914.

DOI: https://doi.org/10.1126/science.abd3871

148. Lin C-Y, Wolf J, Brice DC, Sun Y, et al. Pre-existing humoral immunity to human common cold coronaviruses negatively impacts the protective SARS-CoV-2 antibody response. Cell Host & Microbe. 2022;30(1):83-96.e4. doi: 10.1016/j.chom.2021.12.005.

DOI: https://doi.org/10.1016/j.chom.2021.12.005

149. Wratil PR, Schmacke NA, Karakoc B, Dulovic A, Junker D, Becker M, Rothbauer U, Osterman A, Spaeth PM, Ruhle A, Gapp M, Schneider S, Muenchhoff M, Hellmuth JC, Scherer C, Mayerle J, Reincke M, Behr J, Kääb S, Zwissler B, von Bergwelt-Baildon M, Eberle J, Kaderali L, Schneiderhan-Marra N, Hornung V, Keppler OT. Evidence for increased SARS-CoV-2 susceptibility and COVID-19 severity related to pre-existing immunity to seasonal coronaViruses. Cell Reports. 2021;37(13):110169. doi: 10.1016/j.celrep.2021.110169.

DOI: https://doi.org/10.1016/j.celrep.2021.110169

150. Ljubin-Sternak S, Meštrović T, Lukšić I, Mijač M, Vraneš J. Seasonal Coronaviruses and Other Neglected Respiratory Viruses: A Global Perspective and a Local Snapshot. Frontiers in Public Health. 2021;9. doi: 10.3389/fpubh.2021.691163.

DOI: https://doi.org/10.3389/fpubh.2021.691163

151. Remap-Cap Investigators. Interleukin-6 receptor antagonists in critically ill patients with Covid-19. New England Journal of Medicine. 2021;384(16):1491-502.

DOI: https://doi.org/10.1056/NEJMoa2100433

152. Rosas IO, Bräu N, Waters M, Go RC, Hunter BD, Bhagani S, Skiest D, Aziz MS, Cooper N, Douglas IS. Tocilizumab in hospitalized patients with severe Covid-19 Pneumonia. New England Journal of Medicine. 2021;384(16):1503-16.

DOI: https://doi.org/10.1056/NEJMoa2028700

153. Recovery Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2021;397(10285):1637-45. doi: 10.1016/S0140-6736(21)00676-0. PubMed PMID: 33933206; PMCID: PMC8084355.

154. The WHO Rapid Evidence Appraisal for COVID-19 Therapies Working Group. Association Between Administration of IL-6 Antagonists and Mortality Among Patients Hospitalized for COVID-19: A Meta-analysis. Jama. 2021;326(6):499-518. doi: 10.1001/Jama.2021.11330.

155. Della-Torre E, Criscuolo E, Lanzillotta M, Locatelli M, Clementi N, Mancini N, Dagna L. IL-1 and IL-6 inhibition affects the neutralising activity of anti-SARS-CoV-2 antibodies in patients with COVID-19. The Lancet Rheumatology. 2021;3(12):e829-e31. doi: 10.1016/S2665-9913(21)00321-0.

DOI: https://doi.org/10.1016/S2665-9913(21)00321-0

156. Potere N, Del Buono MG, Caricchio R, Cremer PC, Vecchié A, Porreca E, Dalla Gasperina D, Dentali F, Abbate A, Bonaventura A. Interleukin-1 and the NLRP3 inflammasome in COVID-19: Pathogenetic and therapeutic implications. EBioMedicine. 2022;85:104299. Epub 2022/10/10. doi: 10.1016/j.ebiom.2022.104299. PubMed PMID: 36209522; PMCID: PMC9536001.

DOI: https://doi.org/10.1016/j.ebiom.2022.104299

157. Khani E, Shahrabi M, Rezaei H, Pourkarim F, Afsharirad H, Solduzian M. Current evidence on the use of anakinra in COVID-19. Int Immunopharmacol. 2022;111:109075. Epub 2022/07/30. doi: 10.1016/j.intimp.2022.109075. PubMed PMID: 35905562; PMCID: PMC9296834.

DOI: https://doi.org/10.1016/j.intimp.2022.109075

158. Kyriazopoulou E, Poulakou G, Milionis H, Metallidis S, et al. Early treatment of COVID-19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: a double-blind, randomized controlled phase 3 trial. Nature Medicine. 2021;27(10):1752-60. doi: 10.1038/s41591-021-01499-z.

DOI: https://doi.org/10.1038/s41591-021-01499-z

159. Kyriazopoulou E, Huet T, Cavalli G, Gori A, et al. Effect of anakinra on mortality in patients with COVID-19: a systematic review and patient-level meta-analysis. The Lancet Rheumatology. 2021;3(10):e690-e7. doi: 10.1016/S2665-9913(21)00216-2.

160. Tardif J-C, Bouabdallaoui N, L’Allier PL, Gaudet D, et al. Colchicine for community-treated patients with COVID-19 (COLCORONA): a phase 3, randomised, double-blinded, adaptive, placebo-controlled, multicentre trial. The Lancet Respiratory Medicine. 2021;9(8):924-32. doi: 10.1016/S2213-2600(21)00222-8.

161. Pascual-Figal DA, Roura-Piloto AE, Moral-Escudero E, Bernal E, Albendín-Iglesias H, Pérez-Martínez MT, Noguera-Velasco JA, Cebreiros-López I, Hernández-Vicente Á, Vázquez-Andrés D, Sánchez-Pérez C, Khan A, Sánchez-Cabo F, García-Vázquez E. Colchicine in Recently Hospitalized Patients with COVID-19: A Randomized Controlled Trial (COL-COVID). Int J Gen Med. 2021;14:5517-26. Epub 2021/09/21. doi: 10.2147/ijgm.S329810. PubMed PMID: 34539185; PMCID: PMC8445096.

DOI: https://doi.org/10.2147/IJGM.S329810

162. Diaz R, Orlandini A, Castellana N, Caccavo A, Corral P, Corral G, Chacón C, Lamelas P, Botto F, Díaz ML, Domínguez JM, Pascual A, Rovito C, Galatte A, Scarafia F, Sued O, Gutierrez O, Jolly SS, Miró JM, Eikelboom J, Loeb M, Maggioni AP, Bhatt DL, Yusuf S. Effect of Colchicine vs Usual Care Alone on Intubation and 28-Day Mortality in Patients Hospitalized With COVID-19: A Randomized Clinical Trial. JAMA Netw Open. 2021;4(12):e2141328. Epub 2021/12/30. doi: 10.1001/jamanetworkopen.2021.41328. PubMed PMID: 34964849; PMCID: PMC8717104.

DOI: https://doi.org/10.1001/jamanetworkopen.2021.41328

163. Alavi Darazam I, Shokouhi S, Pourhoseingholi MA, Naghibi Irvani SS, Mokhtari M, Shabani M, Amirdosara M, Torabinavid P, Golmohammadi M, Hashemi S, Azimi A, Jafarazadeh Maivan MH, Rezaei O, Zali A, Hajiesmaeili M, Shabanpour Dehbsneh H, Hoseyni Kusha A, Taleb Shoushtari M, Khalili N, Soleymaninia A, Gachkar L, Khoshkar A. Role of interferon therapy in severe COVID-19: the COVIFERON randomized controlled trial. Scientific Reports. 2021;11(1):8059. doi: 10.1038/s41598-021-86859-y.

DOI: https://doi.org/10.1038/s41598-021-86859-y

164. Kalil AC, Mehta AK, Patterson TF, Erdmann N, et al. Efficacy of interferon beta-1a plus remdesivir compared with remdesivir alone in hospitalised adults with COVID-19: a double-blind, randomised, placebo-controlled, phase 3 trial. The Lancet Respiratory Medicine. 2021;9(12):1365-76. doi: 10.1016/S2213-2600(21)00384-2.

165. Davoudi-Monfared E, Rahmani H, Khalili H, Hajiabdolbaghi M, Salehi M, Abbasian L, Kazemzadeh H, Yekaninejad MS. A Randomized Clinical Trial of the Efficacy and Safety of Interferon β-1a in Treatment of Severe COVID-19. Antimicrobial Agents and Chemotherapy. 2020;64(9):e01061-20. doi: 10.1128/AAC.01061-20.

DOI: https://doi.org/10.1128/AAC.01061-20

166. Rahmani H, Davoudi-Monfared E, Nourian A, Khalili H, Hajizadeh N, Jalalabadi NZ, Fazeli MR, Ghazaeian M, Yekaninejad MS. Interferon β-1b in treatment of severe COVID-19: A randomized clinical trial. Int Immunopharmacol. 2020;88:106903. Epub 2020/08/31. doi: 10.1016/j.intimp.2020.106903. PubMed PMID: 32862111; PMCID: PMC7445008.

DOI: https://doi.org/10.1016/j.intimp.2020.106903

167. Lu L-Y, Feng P-H, Yu M-S, Chen M-C, Lin AJ-H, Chen JL, Yu LH-L. Current utilization of interferon alpha for the treatment of coronavirus disease 2019: A comprehensive review. Cytokine & Growth Factor Reviews. 2022;63:34-43. doi: 10.1016/j.cytogfr.2022.01.001.

DOI: https://doi.org/10.1016/j.cytogfr.2022.01.001

168. Hung IF-N, Lung K-C, Tso EY-K, Liu R, et al. Triple combination of interferon beta-1b, lopinavir&#x2013;ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. The Lancet. 2020;395(10238):1695-704. doi: 10.1016/S0140-6736(20)31042-4.

169. Jhuti D, Rawat A, Guo CM, Wilson LA, Mills EJ, Forrest JI. Interferon Treatments for SARS-CoV-2: Challenges and Opportunities. Infect Dis Ther. 2022;11(3):953-72. Epub 2022/04/22. doi: 10.1007/s40121-022-00633-9. PubMed PMID: 35445964; PMCID: PMC9022612.

DOI: https://doi.org/10.1007/s40121-022-00633-9

170. van de Veerdonk FL, Giamarellos-Bourboulis E, Pickkers P, Derde L, Leavis H, van Crevel R, Engel JJ, Wiersinga WJ, Vlaar APJ, Shankar-Hari M, van der Poll T, Bonten M, Angus DC, van der Meer JWM, Netea MG. A guide to immunotherapy for COVID-19. Nature Medicine. 2022;28(1):39-50. doi: 10.1038/s41591-021-01643-9.

DOI: https://doi.org/10.1038/s41591-021-01643-9

171. Kalil AC, Patterson TF, Mehta AK, Tomashek KM, et al. Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19. New England Journal of Medicine. 2020;384(9):795-807. doi: 10.1056/NEJMoa2031994. PubMed PMID: 33306283.

172. Marconi VC, Ramanan AV, de Bono S, Kartman CE, et al. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, placebo-controlled phase 3 trial. The Lancet Respiratory Medicine. 2021;9(12):1407-18. doi: 10.1016/S2213-2600(21)00331-3.

173. Ngamprasertchai T, Kajeekul R, Sivakorn C, Ruenroegnboon N, Luvira V, Siripoon T, Luangasanatip N. Efficacy and Safety of Immunomodulators in Patients with COVID-19: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Infect Dis Ther. 2022;11(1):231-48. Epub 2021/11/11. doi: 10.1007/s40121-021-00545-0. PubMed PMID: 34757578; PMCID: PMC8579415.

DOI: https://doi.org/10.1007/s40121-021-00545-0

174. Schultheiß C, Willscher E, Paschold L, Gottschick C, Klee B, Henkes SS, Bosurgi L, Dutzmann J, Sedding D, Frese T, Girndt M, Höll JI, Gekle M, Mikolajczyk R, Binder M. The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19. Cell Rep Med. 2022;3(6):100663. Epub 2022/06/23. doi: 10.1016/j.xcrm.2022.100663. PubMed PMID: 35732153; PMCID: PMC9214726.

DOI: https://doi.org/10.1016/j.xcrm.2022.100663

175. Rojas M, Rodríguez Y, Acosta-Ampudia Y, Monsalve DM, Zhu C, Li Q-Z, Ramírez-Santana C, Anaya J-M. Autoimmunity is a hallmark of post-COVID syndrome. Journal of Translational Medicine. 2022;20(1):129. doi: 10.1186/s12967-022-03328-4.

DOI: https://doi.org/10.1186/s12967-022-03328-4

176. Su Y, Yuan D, Chen DG, Ng RH, et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell. 2022;185(5):881-95.e20. Epub 2022/02/27. doi: 10.1016/j.cell.2022.01.014. PubMed PMID: 35216672; PMCID: PMC8786632.

Most read articles by the same author(s)