Changes in the Serum Metabolome of Patients Treated With Broad-Spectrum Antibiotics

Main Article Content

George Eugene Jaskiw
Mark E. Obrenovich
Sirisha Kundrapu
Curtis J. Donskey

Abstract

Background: The gut microbiome (GMB) generates numerous small chemicals that can be absorbed by the host and variously biotransformed, incorporated, or excreted. The resulting metabolome can provide information about the state of the GMB, of the host, and of their relationship. Exploiting this information in the service of biomarker development is contingent on knowing the GMB-sensitivity of the individual chemicals comprising the metabolome. In this regard, human studies have lagged far behind animal studies. Accordingly, we tested the hypothesis that serum levels of chemicals unequivocally demonstrated to be GMB-sensitive in rodent models would also be affected in a clinical patient sample treated with broad spectrum antibiotics.

Methods: We collected serum samples from 20 hospitalized patients before, during, and after treatment with broad-spectrum antibiotics. We also collected samples from 5 control patients admitted to the hospital but not prescribed antibiotics. We submitted the samples for a non-targeted metabolomic analysis and then focused on chemicals known to be affected both by germ-free status and by antibiotic treatment in the mouse and/or rat.

Results: Putative identification was obtained for 499 chemicals in human serum. An aggregate analysis did not show any time x treatment interactions. However, our literature search identified 10 serum chemicals affected both by germ-free status and antibiotic treatment in the mouse or rat. Six of those chemicals were measured in our patient samples and additionally met criteria for inclusion in a focused analysis. Serum levels of 5 chemicals (p-cresol sulfate, phenol sulfate, hippurate, indole propionate, and indoxyl sulfate) declined significantly in our group of antibiotic-treated patients but did not change in our patient control group.

Conclusions: Broad-spectrum antibiotic treatment in patients lowered serum levels of selected chemicals previously demonstrated to be GMB-sensitive in rodent models. Interestingly, all those chemicals are known to be uremic solutes that can be derived from aromatic amino acids (L-phenylalanine, L-tyrosine, or L-tryptophan) by anaerobic bacteria, particularly Clostridial species. We conclude that judiciously selected serum chemicals can reliably detect antibiotic-induced suppression of the GMB in man and thus facilitate further metabolome-based biomarker development.

Article Details

Section
Articles
Author Biography

George Eugene Jaskiw, Veterans Affairs Northeast Ohio Healthcare System, Case Western Reserve University School of Medicine

Professor, Department of Psychiatry

Case Western Reserve University School of Medicine

References

1. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A. 2009;106(10):3698-703. Epub 2009/02/24. doi: 10.1073/pnas.0812874106. PubMed PMID: 19234110; PMCID: PMC2656143.

2. Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol. 2012;10(11):735-42. Epub 2012/09/25. doi: 10.1038/nrmicro2876. PubMed PMID: 23000955.

3. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vazquez-Fresno R, Sajed T, Johnson D, Li C, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal S, Arndt D, Liang Y, Badran H, Grant J, Serra-Cayuela A, Liu Y, Mandal R, Neveu V, Pon A, Knox C, Wilson M, Manach C, Scalbert A. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2018;46(D1):D608-D17. Epub 2017/11/16. doi: 10.1093/nar/gkx1089. PubMed PMID: 29140435; PMCID: PMC5753273.

4. Brown JM, Hazen SL. Targeting of microbe-derived metabolites to improve human health: The next frontier for drug discovery. J Biol Chem. 2017;292(21):8560-8. Epub 2017/04/09. doi: 10.1074/jbc.R116.765388. PubMed PMID: 28389555; PMCID: PMC5448085.

5. Donia MS, Fischbach MA. Small molecules from the human microbiota. Science. 2015;349(6246):1254766-1-10. Epub 2015/07/25. doi: 10.1126/science.1254766. PubMed PMID: 26206939; PMCID: PMC4641445.

6. Tomas-Barberan FA, Selma MV, Espin JC. Polyphenols’ Gut Microbiota Metabolites: Bioactives or Biomarkers? J Agric Food Chem. 2018;66(14):3593-4. Epub 2018/03/21. doi: 10.1021/acs.jafc.8b00827. PubMed PMID: 29558130.

7. Luczynski P, McVey Neufeld KA, Oriach CS, Clarke G, Dinan TG, Cryan JF. Growing up in a Bubble: Using Germ-Free Animals to Assess the Influence of the Gut Microbiota on Brain and Behavior. Int J Neuropsychopharmacol. 2016;19(8). Epub 2016/02/26. doi: 10.1093/ijnp/pyw020. PubMed PMID: 26912607; PMCID: PMC5006193.

8. Dudek-Wicher RK, Junka A, Bartoszewicz M. The influence of antibiotics and dietary components on gut microbiota. Prz Gastroenterol. 2018;13(2):85-92. Epub 2018/07/14. doi: 10.5114/pg.2018.76005. PubMed PMID: 30002765; PMCID: PMC6040098.

9. Donskey CJ, Chowdhry TK, Hecker MT, Hoyen CK, Hanrahan JA, Hujer AM, Hutton-Thomas RA, Whalen CC, Bonomo RA, Rice LB. Effect of antibiotic therapy on the density of vancomycin-resistant enterococci in the stool of colonized patients. N Engl J Med. 2000;343(26):1925-32. Epub 2001/01/03. doi: 10.1056/NEJM200012283432604. PubMed PMID: 11136263; PMCID: PMC4370337.

10. Jump RL, Kraft D, Hurless K, Polinkovsky A, Donskey CJ. Impact of Tigecycline Versus Other Antibiotics on the Fecal Metabolome and on Colonization Resistance to Clostridium Difficile in Mice. Pathog Immun. 2017;2(1):1-20. Epub 2017/02/22. doi: 10.20411/pai.v2i1.159. PubMed PMID: 28217763; PMCID: PMC5315001.

11. Pultz NJ, Donskey CJ. Effect of antibiotic treatment on growth of and toxin production by Clostridium difficile in the cecal contents of mice. Antimicrob Agents Chemother. 2005;49(8):3529-32. Epub 2005/07/29. doi: 10.1128/AAC.49.8.3529-3532.2005. PubMed PMID: 16048976; PMCID: PMC1196291.

12. Lee SH, An JH, Park HM, Jung BH. Investigation of endogenous metabolic changes in the urine of pseudo germ-free rats using a metabolomic approach. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;887-888:8-18. Epub 2012/02/04. doi: 10.1016/j.jchromb.2011.12.030. PubMed PMID: 22300547.

13. Rogers WF, Jr., Burdick MP, Burnett GR. The effect of antibiotics on the excretion of phenolic compounds. J Lab Clin Med. 1955;45(1):87-96. Epub 1955/01/01. PubMed PMID: 13233631.

14. Reijnders D, Goossens GH, Hermes GD, Neis EP, van der Beek CM, Most J, Holst JJ, Lenaerts K, Kootte RS, Nieuwdorp M, Groen AK, Olde Damink SW, Boekschoten MV, Smidt H, Zoetendal EG, Dejong CH, Blaak EE. Effects of Gut Microbiota Manipulation by Antibiotics on Host Metabolism in Obese Humans: A Randomized Double-Blind Placebo-Controlled Trial. Cell Metab. 2016;24(1):63-74. Epub 2016/07/15. doi: 10.1016/j.cmet.2016.06.016. PubMed PMID: 27411009.

15. Nazzal L, Roberts J, Singh P, Jhawar S, Matalon A, Gao Z, Holzman R, Liebes L, Blaser MJ, Lowenstein J. Microbiome perturbation by oral vancomycin reduces plasma concentration of two gut-derived uremic solutes, indoxyl sulfate and p-cresyl sulfate, in end-stage renal disease. Nephrol Dial Transplant. 2017;32(11):1809-17. Epub 2017/04/06. doi: 10.1093/ndt/gfx029. PubMed PMID: 28379433.

16. Singh B, Jana SK, Ghosh N, Das SK, Joshi M, Bhattacharyya P, Chaudhury K. Metabolomic profiling of doxycycline treatment in chronic obstructive pulmonary disease. J Pharm Biomed Anal. 2017;132:103-8. Epub 2016/10/28. doi: 10.1016/j.jpba.2016.09.034. PubMed PMID: 27697570.

17. Klein CF, Holle SLK, Andersen MH, Pedersen A, Bundgaard H, Iversen KK, Malmendal A. In-hospital metabolite changes in infective endocarditis-a longitudinal (1)H NMR-based study. Eur J Clin Microbiol Infect Dis. 2019;38(8):1553-60. Epub 2019/05/24. doi: 10.1007/s10096-019-03586-z. PubMed PMID: 31119577.

18. Koo HL, DuPont HL. Rifaximin: a unique gastrointestinal-selective antibiotic for enteric diseases. Curr Opin Gastroenterol. 2010;26(1):17-25. Epub 2009/11/03. doi: 10.1097/MOG.0b013e328333dc8d. PubMed PMID: 19881343; PMCID: PMC4737517.

19. Klein EY, Van Boeckel TP, Martinez EM, Pant S, Gandra S, Levin SA, Goossens H, Laxminarayan R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci U S A. 2018;115(15):E3463-e70. Epub 2018/03/28. doi: 10.1073/pnas.1717295115. PubMed PMID: 29581252; PMCID: PMC5899442.

20. CDC. Adverse Drug Events from Antibiotics 2020 [cited 2020]. Available from: https://www.cdc.gov/medicationsafety/adverse-drug-events-specific-medicines.html#anchor_1558445387.

21. Kamada N, Chen GY, Inohara N, Nunez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol. 2013;14(7):685-90. Epub 2013/06/20. doi: 10.1038/ni.2608. PubMed PMID: 23778796; PMCID: PMC4083503.

22. Baumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature. 2016;535(7610):85-93. Epub 2016/07/08. doi: 10.1038/nature18849. PubMed PMID: 27383983; PMCID: PMC5114849.

23. Pultz NJ, Stiefel U, Subramanyan S, Helfand MS, Donskey CJ. Mechanisms by which anaerobic microbiota inhibit the establishment in mice of intestinal colonization by vancomycin-resistant Enterococcus. J Infect Dis. 2005;191(6):949-56. Epub 2005/02/18. doi: 10.1086/428090. PubMed PMID: 15717271.

24. Jump RL, Polinkovsky A, Hurless K, Sitzlar B, Eckart K, Tomas M, Deshpande A, Nerandzic MM, Donskey CJ. Metabolomics analysis identifies intestinal microbiota- derived biomarkers of colonization resistance in clindamycin-treated mice. PLoS One. 2014;9(7):e101267. Epub 2014/07/06. doi: 10.1371/journal.pone.0101267. PubMed PMID: 24988418; PMCID: PMC4079339.

25. Deshpande A, Pant C, Olyaee M, Donskey CJ. Hospital readmissions related to Clostridium difficile infection in the United States. Am J Infect Control. 2018;46(3):346-7. Epub 2017/10/21. doi: 10.1016/j.ajic.2017.08.043. PubMed PMID: 29050906.

26. Fischer N, Relman DA. Clostridium difficile, Aging, and the Gut: Can Microbiome Rejuvenation Keep Us Young and Healthy? J Infect Dis. 2018;217(2):174-6. Epub 2017/10/03. doi: 10.1093/infdis/jix417. PubMed PMID: 28968708; PMCID: PMC5853914.

27. Bowyer RCE, Jackson MA, Le Roy CI, Ni Lochlainn M, Spector TD, Dowd JB, Steves CJ. Socioeconomic Status and the Gut Microbiome: A TwinsUK Cohort Study. Microorganisms. 2019;7(1). Epub 2019/01/16. doi: 10.3390/microorganisms7010017. PubMed PMID: 30641975; PMCID: PMC6351927.

28. Xie H, Guo R, Zhong H, Feng Q, Lan Z, Qin B, Ward KJ, Jackson MA, Xia Y, Chen X, Chen B, Xia H, Xu C, Li F, Xu X, Al-Aama JY, Yang H, Wang J, Kristiansen K, Wang J, Steves CJ, Bell JT, Li J, Spector TD, Jia H. Shotgun Metagenomics of 250 Adult Twins Reveals Genetic and Environmental Impacts on the Gut Microbiome. Cell Syst. 2016;3(6):572-84 e3. Epub 2016/11/08. doi: 10.1016/j.cels.2016.10.004. PubMed PMID: 27818083; PMCID: PMC6309625.

29. Singh RK, Chang HW, Yan D, Lee KM, Ucmak D, Wong K, Abrouk M, Farahnik B, Nakamura M, Zhu TH, Bhutani T, Liao W. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):73. Epub 2017/04/09. doi: 10.1186/s12967-017-1175-y. PubMed PMID: 28388917; PMCID: PMC5385025.

30. Allen JM, Mailing LJ, Niemiro GM, Moore R, Cook MD, White BA, Holscher HD, Woods JA. Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans. Med Sci Sports Exerc. 2018;50(4):747-57. Epub 2017/11/23. doi: 10.1249/MSS.0000000000001495. PubMed PMID: 29166320.

31. Roager HM, Hansen LB, Bahl MI, Frandsen HL, Carvalho V, Gobel RJ, Dalgaard MD, Plichta DR, Sparholt MH, Vestergaard H, Hansen T, Sicheritz-Ponten T, Nielsen HB, Pedersen O, Lauritzen L, Kristensen M, Gupta R, Licht TR. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut. Nature microbiology. 2016;1(9):16093. Epub 2016/08/27. doi: 10.1038/nmicrobiol.2016.93. PubMed PMID: 27562254.

32. Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE, Brochado AR, Fernandez KC, Dose H, Mori H, Patil KR, Bork P, Typas A. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018;555(7698):623-8. Epub 2018/03/21. doi: 10.1038/nature25979. PubMed PMID: 29555994; PMCID: PMC6108420.

33. Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, Costea PI, Godneva A, Kalka IN, Bar N, Shilo S, Lador D, Vila AV, Zmora N, Pevsner-Fischer M, Israeli D, Kosower N, Malka G, Wolf BC, Avnit-Sagi T, Lotan-Pompan M, Weinberger A, Halpern Z, Carmi S, Fu J, Wijmenga C, Zhernakova A, Elinav E, Segal E. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555(7695):210-5. Epub 2018/03/01. doi: 10.1038/nature25973. PubMed PMID: 29489753.

34. Williamson G, Clifford MN. Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols. Biochem Pharmacol. 2017;139:24-39. Epub 2017/03/23. doi: 10.1016/j.bcp.2017.03.012. PubMed PMID: 28322745.

35. Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, Bjorndahl TC, Krishnamurthy R, Saleem F, Liu P, Dame ZT, Poelzer J, Huynh J, Yallou FS, Psychogios N, Dong E, Bogumil R, Roehring C, Wishart DS. The human urine metabolome. PLoS One. 2013;8(9):e73076. Epub 2013/09/12. doi: 10.1371/journal.pone.0073076. PubMed PMID: 24023812; PMCID: PMC3762851.

36. Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, Bouatra S, Sinelnikov I, Krishnamurthy R, Eisner R, Gautam B, Young N, Xia J, Knox C, Dong E, Huang P, Hollander Z, Pedersen TL, Smith SR, Bamforth F, Greiner R, McManus B, Newman JW, Goodfriend T, Wishart DS. The human serum metabolome. PLoS One. 2011;6(2):e16957. Epub 2011/03/02. doi: 10.1371/journal.pone.0016957. PubMed PMID: 21359215; PMCID: PMC3040193.

37. Stalmach A, Mullen W, Barron D, Uchida K, Yokota T, Cavin C, Steiling H, Williamson G, Crozier A. Metabolite profiling of hydroxycinnamate derivatives in plasma and urine after the ingestion of coffee by humans: identification of biomarkers of coffee consumption. Drug Metab Dispos. 2009;37(8):1749-58. Epub 2009/05/23. doi: 10.1124/dmd.109.028019. PubMed PMID: 19460943.

38. Karu N, Deng L, Slae M, Guo AC, Sajed T, Huynh H, Wine E, Wishart DS. A review on human fecal metabolomics: Methods, applications and the human fecal metabolome database. Anal Chim Acta. 2018;1030:1-24. Epub 2018/07/24. doi: 10.1016/j.aca.2018.05.031. PubMed PMID: 30032758.

39. Marshall DD, Powers R. Beyond the paradigm: Combining mass spectrometry and nuclear magnetic resonance for metabolomics. Progress in nuclear magnetic resonance spectroscopy. 2017;100:1-16. Epub 2017/05/30. doi: 10.1016/j.pnmrs.2017.01.001. PubMed PMID: 28552170; PMCID: PMC5448308.

40. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A. 2003;100(16):9440-5. Epub 2003/07/29. doi: 10.1073/pnas.1530509100. PubMed PMID: 12883005; PMCID: PMC170937.

41. Dwan K, Gamble C, Williamson PR, Kirkham JJ. Systematic review of the empirical evidence of study publication bias and outcome reporting bias - an updated review. PLoS One. 2013;8(7):e66844. Epub 2013/07/19. doi: 10.1371/journal.pone.0066844. PubMed PMID: 23861749; PMCID: PMC3702538.

42. Evans AM, Bridgewater BR, Liu Q, Mitchell MW, Robinson RJ, Dai H, Stewart SJ, DeHaven CD, Miller LAD. High resolution mass spectrometry improves data quantity and quality as compared to unit mass resolution mass spectrometry in high-throughput profiling metabolomics. Metabolomics. 2014;4(2). doi: 10.4172/2153-0769.1000132.

43. Behr C, Kamp H, Fabian E, Krennrich G, Mellert W, Peter E, Strauss V, Walk T, Rietjens I, van Ravenzwaay B. Gut microbiome-related metabolic changes in plasma of antibiotic-treated rats. Arch Toxicol. 2017;91(10):3439-54. Epub 2017/03/25. doi: 10.1007/s00204-017-1949-2. PubMed PMID: 28337503.

44. Behr C, Ramirez-Hincapie S, Cameron HJ, Strauss V, Walk T, Herold M, Beekmann K, Rietjens I, van Ravenzwaay B. Impact of lincosamides antibiotics on the composition of the rat gut microbiota and the metabolite profile of plasma and feces. Toxicol Lett. 2018;296:139-51. Epub 2018/08/14. doi: 10.1016/j.toxlet.2018.08.002. PubMed PMID: 30102961.

45. Jiang L, Zhao X, Huang C, Lei H, Tang H, Wang Y. Dynamic changes in metabolic profiles of rats subchronically exposed to mequindox. Mol Biosyst. 2014;10(11):2914-22. Epub 2014/08/19. doi: 10.1039/c4mb00218k. PubMed PMID: 25131851.

46. Lam V, Su J, Hsu A, Gross GJ, Salzman NH, Baker JE. Intestinal Microbial Metabolites Are Linked to Severity of Myocardial Infarction in Rats. PLoS One. 2016;11(8):e0160840. Epub 2016/08/10. doi: 10.1371/journal.pone.0160840. PubMed PMID: 27505423; PMCID: PMC4978455.

47. Lin W, Wang W, Yang H, Wang D, Ling W. Influence of Intestinal Microbiota on the Catabolism of Flavonoids in Mice. J Food Sci. 2016;81(12):H3026-H34. Epub 2016/10/30. doi: 10.1111/1750-3841.13544. PubMed PMID: 27792839.

48. Sun J, Schnackenberg LK, Khare S, Yang X, Greenhaw J, Salminen W, Mendrick DL, Beger RD. Evaluating effects of penicillin treatment on the metabolome of rats. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;932:134-43. Epub 2013/07/09. doi: 10.1016/j.jchromb.2013.05.030. PubMed PMID: 23831706.

49. Martin AM, Yabut JM, Choo JM, Page AJ, Sun EW, Jessup CF, Wesselingh SL, Khan WI, Rogers GB, Steinberg GR, Keating DJ. The gut microbiome regulates host glucose homeostasis via peripheral serotonin. Proc Natl Acad Sci U S A. 2019;116(40):19802-4. Epub 2019/09/19. doi: 10.1073/pnas.1909311116. PubMed PMID: 31527237; PMCID: PMC6778212.

50. Cho Y, Osgood RS, Bell LN, Karoly ED, Shore SA. Ozone-induced changes in the serum metabolome: Role of the microbiome. PLoS One. 2019;14(8):e0221633. Epub 2019/08/28. doi: 10.1371/journal.pone.0221633. PubMed PMID: 31454377; PMCID: PMC6711505

51. Devlin AS, Marcobal A, Dodd D, Nayfach S, Plummer N, Meyer T, Pollard KS, Sonnenburg JL, Fischbach MA. Modulation of a circulating uremic solute via rational genetic manipulation of the gut microbiota. Cell Host Microbe. 2016;20(6):709-15. Epub 2016/12/06. doi: 10.1016/j.chom.2016.10.021. PubMed PMID: 27916477; PM CID: PMC5159218.

52. Chu C, Murdock MH, Jing D, Won TH, Chung H, Kressel AM, Tsaava T, Addorisio ME, Putzel GG, Zhou L, Bessman NJ, Yang R, Moriyama S, Parkhurst CN, Li A, Meyer HC, Teng F, Chavan SS, Tracey KJ, Regev A, Schroeder FC, Lee FS, Liston C, Artis D. The microbiota regulate neuronal function and fear extinction learning. Nature. 2019;574(7779):543-8. Epub 2019/10/28. doi: 10.1038/s41586-019-1644-y. PubMed PMID: 31645720; PMCID: PMC6818753.

53. Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, Dinan TG, Cryan JF. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry. 2013;18(6):666-73. Epub 2012/06/13. doi: 10.1038/mp.2012.77. PubMed PMID: 22688187.

54. Mishima E, Fukuda S, Mukawa C, Yuri A, Kanemitsu Y, Matsumoto Y, Akiyama Y, Fukuda NN, Tsukamoto H, Asaji K, Shima H, Kikuchi K, Suzuki C, Suzuki T, Tomioka Y, Soga T, Ito S, Abe T. Evaluation of the impact of gut microbiota on uremic solute accumulation by a CE-TOFMS-based metabolomics approach. Kidney Int. 2017;92(3):634-45. Epub 2017/04/12. doi: 10.1016/j.kint.2017.02.011. PubMed PMID: 28396122.

55. Shimada Y, Kinoshita M, Harada K, Mizutani M, Masahata K, Kayama H, Takeda K. Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PLoS One. 2013;8(11):e80604. Epub 2013/11/28. doi: 10.1371/journal.pone.0080604. PubMed PMID: 24278294; PMCID: PMC3835565.

56. Sjogren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, Backhed F, Ohlsson C. The gut microbiota regulates bone mass in mice. J Bone Miner Res. 2012;27(6):1357-67. Epub 2012/03/13. doi: 10.1002/jbmr.1588. PubMed PMID: 22407806; PMCID: PMC3415623.

57. Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 1977;31:107-33. Epub 1977/01/01. doi: 10.1146/annurev.mi.31.100177.000543. PubMed PMID: 334036.

58. Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A. 1998;95(12):6578-83. Epub 1998/06/17. doi: 10.1073/pnas.95.12.6578. PubMed PMID: 9618454; PMCID: PMC33863.

59. Fischbach MA, Sonnenburg JL. Eating for two: how metabolism establishes interspecies interactions in the gut. Cell Host Microbe. 2011;10(4):336-47. Epub 2011/10/25. doi: 10.1016/j.chom.2011.10.002. PubMed PMID: 22018234; PMCID: PMC3225337.

60. Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima JR, Prifti E, Nielsen T, Juncker AS, Manichanh C, Chen B, Zhang W, Levenez F, Wang J, Xu X, Xiao L, Liang S, Zhang D, Zhang Z, Chen W, Zhao H, Al-Aama JY, Edris S, Yang H, Wang J, Hansen T, Nielsen HB, Brunak S, Kristiansen K, Guarner F, Pedersen O, Dore J, Ehrlich SD, Meta HITC; Bork P, Wang J, Meta HITC. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol. 2014;32(8):834-41. Epub 2014/07/07. doi: 10.1038/nbt.2942. PubMed PMID: 24997786.

61. Sridharan GV, Choi K, Klemashevich C, Wu C, Prabakaran D, Pan LB, Steinmeyer S, Mueller C, Yousofshahi M, Alaniz RC, Lee K, Jayaraman A. Prediction and quantification of bioactive microbiota metabolites in the mouse gut. Nature communications. 2014;5:5492. Epub 2014/11/21. doi: 10.1038/ncomms6492. PubMed PMID: 25411059.

62. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353-D61. Epub 2016/12/03. doi: 10.1093/nar/gkw1092. PubMed PMID: 27899662; PMCID: PMC5210567.

63. Selmer T, Andrei PI. p-Hydroxyphenylacetate decarboxylase from Clostridium difficile. A novel glycyl radical enzyme catalysing the formation of p-cresol. Eur J Biochem. 2001;268(5):1363-72. Epub 2001/03/07. doi: 10.1046/j.1432-1327.2001.02001.x. PubMed PMID: 11231288.

64. Dawson LF, Donahue EH, Cartman ST, Barton RH, Bundy J, McNerney R, Minton NP, Wren BW. The analysis of para-cresol production and tolerance in Clostridium difficile 027 and 012 strains. BMC Microbiol. 2011;11:86. Epub 2011/04/30. doi: 10.1186/1471-2180-11-86. PubMed PMID: 21527013; PMCID: PMC3102038.

65. Passmore IJ, Letertre MPM, Preston MD, Bianconi I, Harrison MA, Nasher F, Kaur H, Hong HA, Baines SD, Cutting SM, Swann JR, Wren BW, Dawson LF. Para-cresol production by Clostridium difficile affects microbial diversity and membrane integrity of Gram-negative bacteria. PLoS Pathog. 2018;14(9):e1007191. Epub 2018/09/13. doi: 10.1371/journal.ppat.1007191. PubMed PMID: 30208103; PMCID: PMC6135563.

66. Rakoff-Nahoum S, Foster KR, Comstock LE. The evolution of cooperation within the gut microbiota. Nature. 2016;533(7602):255-9. Epub 2016/04/26. doi: 10.1038/nature17626. PubMed PMID: 27111508; PMCID: PMC4978124.

67. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449(7164):804-10. Epub 2007/10/19. doi: 10.1038/nature06244. PubMed PMID: 17943116; PMCID: PMC3709439.

68. Nagpal R, Wang S, Solberg Woods LC, Seshie O, Chung ST, Shively CA, Register TC, Craft S, McClain DA, Yadav H. Comparative Microbiome Signatures and Short-Chain Fatty Acids in Mouse, Rat, Non-human Primate, and Human Feces. Front Microbiol. 2018;9:2897. Epub 2018/12/18. doi: 10.3389/fmicb.2018.02897. PubMed PMID: 30555441; PMCID: PMC6283898.

69. Li D, Chen H, Mao B, Yang Q, Zhao J, Gu Z, Zhang H, Chen YQ, Chen W. Microbial Biogeography and Core Microbiota of the Rat Digestive Tract. Sci Rep. 2017;8:45840. Epub 2017/04/05. doi: 10.1038/srep45840. PubMed PMID: 28374781; PMCID: PMC5379200.

70. Harrison CA, Laubitz D, Midura-Kiela MT, Jamwal DR, Besselsen DG, Ghishan FK, Kiela PR. Sexual Dimorphism in the Response to Broad-spectrum Antibiotics During T Cell-mediated Colitis. J Crohns Colitis. 2019;13(1):115-26. Epub 2018/09/27. doi: 10.1093/ecco-jcc/jjy144. PubMed PMID: 30252029; PMCID: PMC6302957.

71. Liu Z, Xia B, Saric J, Utzinger J, Holmes E, Keiser J, Li JV. Effects of Vancomycin and Ciprofloxacin on the NMRI Mouse Metabolism. J Proteome Res. 2018;17(10):3565-

73. Epub 2018/09/06. doi: 10.1021/acs.jproteome.8b00583. PubMed PMID: 30183313.

72. Bajaj JS, Heuman DM, Sanyal AJ, Hylemon PB, Sterling RK, Stravitz RT, Fuchs M, Ridlon JM, Daita K, Monteith P, Noble NA, White MB, Fisher A, Sikaroodi M, Rangwala H, Gillevet PM. Modulation of the metabiome by rifaximin in patients with cirrhosis and minimal hepatic encephalopathy. PLoS One. 2013;8(4):e60042. Epub 2013/04/09. doi: 10.1371/journal.pone.0060042. PubMed PMID: 23565181; PMCID: PMC3615021.

73. Westphal JF, Vetter D, Brogard JM. Hepatic side-effects of antibiotics. J Antimicrob Chemother. 1994;33(3):387-401. Epub 1994/03/01. doi: 10.1093/jac/33.3.387. PubMed PMID: 8040106.

74. Fanos V, Cataldi L. Renal transport of antibiotics and nephrotoxicity: a review. J Chemother. 2001;13(5):461-72. Epub 2002/01/05. doi: 10.1179/joc.2001.13.5.461. PubMed PMID: 11760211.

75. Barnett LMA, Cummings BS. Nephrotoxicity and Renal Pathophysiology: A Contemporary Perspective. Toxicol Sci. 2018;164(2):379-90. Epub 2018/06/26. doi: 10.1093/toxsci/kfy159. PubMed PMID: 29939355.

76. Lees HJ, Swann JR, Wilson ID, Nicholson JK, Holmes E. Hippurate: the natural history of a mammalian-microbial cometabolite. J Proteome Res. 2013;12(4):1527-46. Epub 2013/01/25. doi: 10.1021/pr300900b. PubMed PMID: 23342949.

77. Quick AJ. The conjugation of benzoic acid in man. J Biol Chem. 1931;93.

78. Iyanagi T. Molecular mechanism of phase I and phase II drug-metabolizing enzymes: implications for detoxification. Int Rev Cytol. 2007;260:35-112. Epub 2007/05/08. doi: 10.1016/s0074-7696(06)60002-8. PubMed PMID: 17482904.

79. Jancova P, Anzenbacher P, Anzenbacherova E. Phase II drug metabolizing enzymes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2010;154(2):103-16. Epub 2010/07/30. doi: 10.5507/bp.2010.017. PubMed PMID: 20668491.

80. Russell WR, Duncan SH, Scobbie L, Duncan G, Cantlay L, Calder AG, Anderson SE, Flint HJ. Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein. Mol Nutr Food Res. 2013;57(3):523-35. Epub 2013/01/26. doi: 10.1002/mnfr.201200594. PubMed PMID: 23349065.

81. Curtius HC, Mettler M, Ettlinger L. Study of the intestinal tyrosine metabolism using stable isotopes and gas chromatography-mass spectrometry. J Chromatogr. 1976;126:569-80.

82. Koistinen VM, Nordlund E, Katina K, Mattila I, Poutanen K, Hanhineva K, Aura AM. Effect of Bioprocessing on the In Vitro Colonic Microbial Metabolism of Phenolic Acids from Rye Bran Fortified Breads. J Agric Food Chem. 2017;65(9):1854-64. Epub 2017/02/17. doi: 10.1021/acs.jafc.6b05110. PubMed PMID: 28206756.

83. Vetrani C, Rivellese AA, Annuzzi G, Adiels M, Boren J, Mattila I, Oresic M, Aura AM. Metabolic transformations of dietary polyphenols: comparison between in vitro colonic and hepatic models and in vivo urinary metabolites. J Nutr Biochem. 2016;33:111-8. Epub 2016/05/09. doi: 10.1016/j.jnutbio.2016.03.007. PubMed PMID: 27155917.

84. Brown EM, McDougall GJ, Stewart D, Pereira-Caro G, Gonzalez-Barrio R, Allsopp P, Magee P, Crozier A, Rowland I, Gill CI. Persistence of anticancer activity in berry extracts after simulated gastrointestinal digestion and colonic fermentation. PLoS One. 2012;7(11):e49740. Epub 2012/11/28. doi: 10.1371/journal.pone.0049740. PubMed PMID: 23185422; PMCID: PMC3504104.

85. Brown EM, Nitecki S, Pereira-Caro G, McDougall GJ, Stewart D, Rowland I, Crozier A, Gill CI. Comparison of in vivo and in vitro digestion on polyphenol composition in lingonberries: potential impact on colonic health. Biofactors. 2014;40(6):611-23. Epub 2014/11/02. doi: 10.1002/biof.1173. PubMed PMID: 25359330.

86. Stalmach A, Edwards CA, Wightman JD, Crozier A. Colonic catabolism of dietary phenolic and polyphenolic compounds from Concord grape juice. Food Funct. 2013;4(1):52-62. Epub 2012/09/11. doi: 10.1039/c2fo30151b. PubMed PMID: 22961385.

87. Jimenez-Giron A, Queipo-Ortuno MI, Boto-Ordonez M, Munoz-Gonzalez I, Sanchez-Patan F, Monagas M, Martin-Alvarez PJ, Murri M, Tinahones FJ, Andres-Lacueva C, Bartolome B, Moreno-Arribas MV. Comparative study of microbial-derived phenolic metabolites in human feces after intake of gin, red wine, and dealcoholized red wine. J Agric Food Chem. 2013;61(16):3909-15. Epub 2013/04/13. doi: 10.1021/jf400678d. PubMed PMID: 23578197.

88. Gross G, Jacobs DM, Peters S, Possemiers S, van Duynhoven J, Vaughan EE, van de Wiele T. In vitro bioconversion of polyphenols from black tea and red wine/grape juice by human intestinal microbiota displays strong interindividual variability. J Agric Food Chem. 2010;58(18):10236-46. Epub 2010/08/24. doi: 10.1021/jf101475m. PubMed PMID: 20726519.

89. Bresciani L, Angelino D, Vivas EI, Kerby RL, Garcia-Viguera C, Del Rio D, Rey FE, Mena P. Differential Catabolism of an Anthocyanin-Rich Elderberry Extract by Three Gut Microbiota Bacterial Species. J Agric Food Chem. 2019. Epub 2019/04/11. doi: 10.1021/acs.jafc.9b00247. PubMed PMID: 30969770.

90. Carry E, Zhao D, Mogno I, Faith J, Ho L, Villani T, Patel H, Pasinetti GM, Simon JE, Wu Q. Targeted analysis of microbial-generated phenolic acid metabolites derived from grape flavanols by gas chromatography-triple quadrupole mass spectrometry. J Pharm Biomed Anal. 2018;159:374-83. Epub 2018/07/23. doi: 10.1016/j.jpba.2018.06.034. PubMed PMID: 30032004.

91. Ou K, Sarnoski P, Schneider KR, Song K, Khoo C, Gu L. Microbial catabolism of procyanidins by human gut microbiota. Mol Nutr Food Res. 2014;58(11):2196-205. Epub 2014/07/22. doi: 10.1002/mnfr.201400243. PubMed PMID: 25045165.

92. Jaganath IB, Mullen W, Lean ME, Edwards CA, Crozier A. In vitro catabolism of rutin by human fecal bacteria and the antioxidant capacity of its catabolites. Free Radic Biol Med. 2009;47(8):1180-9. Epub 2009/08/04. doi: 10.1016/j.freeradbiomed. 2009.07.031. PubMed PMID: 19647790.

93. Bazzocco S, Mattila I, Guyot S, Renard CM, Aura AM. Factors affecting the conversion of apple polyphenols to phenolic acids and fruit matrix to short-chain fatty acids by human faecal microbiota in vitro. Eur J Nutr. 2008;47(8):442-52. Epub 2008/10/22. doi: 10.1007/s00394-008-0747-2. PubMed PMID: 18931964.

94. Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R. Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014;35(9):2089-96. Epub 2014/07/20. doi: 10.1093/carcin/bgu131. PubMed PMID: 25037050; PMCID: PMC4146421.

95. Temellini A, Mogavero S, Giulianotti PC, Pietrabissa A, Mosca F, Pacifici GM. Conjugation of benzoic acid with glycine in human liver and kidney: a study on the interindividual variability. Xenobiotica. 1993;23(12):1427-33. Epub 1993/12/01. doi: 10.3109/00498259309059451. PubMed PMID: 8135043.

96. Strahl NR, Barr WH. Intestinal drug absorption and metabolism. 3. Glycine conjugation and accumulation of benzoic acid in rat intestinal tissue. J Pharm Sci. 1971;60(2):278-81. Epub 1971/02/01. doi: 10.1002/jps.2600600227. PubMed PMID: 5572455.

97. Badenhorst CP, Erasmus E, van der Sluis R, Nortje C, van Dijk AA. A new perspective on the importance of glycine conjugation in the metabolism of aromatic acids. Drug Metab Rev. 2014;46(3):343-61. Epub 2014/04/24. doi: 10.3109/03602532.2014.908903. PubMed PMID: 24754494.

98. Drasar BS, Hill MJ. Metabolism of Nitrogen Compounds. Human Intestinal Flora. London: Academic Press; 1974. p. 72-102.

99. Smith EA, Macfarlane GT. Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J Appl Bacteriol. 1996;81(3):288-302. Epub 1996/09/01. PubMed PMID: 8810056.

100. Smith EA, Macfarlane GT. Formation of Phenolic and Indolic Compounds by Anaerobic Bacteria in the Human Large Intestine. Microb Ecol. 1997;33(3):180-8. Epub 1997/04/01. PubMed PMID: 9115181.

101. Bone E, Tamm A, Hill M. The production of urinary phenols by gut bacteria and their possible role in the causation of large bowel cancer. Am J Clin Nutr. 1976;29(12):1448-54.

102. Saito Y, Sato T, Nomoto K, Tsuji H. Identification of phenol- and p-cresol-producing intestinal bacteria by using media supplemented with tyrosine and its metabolites. FEMS Microbiol Ecol. 2018;94(9). Epub 2018/07/10. doi: 10.1093/femsec/fiy125. PubMed PMID: 29982420; PMCID: PMC6424909.

103. Jacobs DM, Deltimple N, van Velzen E, van Dorsten FA, Bingham M, Vaughan EE, van Duynhoven J. 1H NMR metabolite profiling of feces as a tool to assess the impact of nutrition on the human microbiome. NMR Biomed. 2008;21(6):615-26. doi: 10.1002/nbm.1233.

104. Smith EA, Macfarlane GT. Dissimilatory amino acid metabolism in human colonic bacteria. Anaerobe. 1997;3(5):327-37. Epub 2006/08/05. doi: 10.1006/anae.1997.0121. PubMed PMID: 16887608.

105. de Loor H, Bammens B, Evenepoel P, De Preter V, Verbeke K. Gas chromatographic-mass spectrometric analysis for measurement of p-cresol and its conjugated metabolites in uremic and normal serum. Clin Chem. 2005;51(8):1535-8. Epub 2005/07/26. doi: 10.1373/clinchem.2005.050781. PubMed PMID: 16040852.

106. Kobashi K, Fukaya Y, Kim DH, Akao T, Takebe S. A novel type of aryl sulfotransferase obtained from an anaerobic bacterium of human intestine. Arch Biochem Biophys. 1986;245(2):537-9. Epub 1986/03/01. doi: 10.1016/0003-9861(86)90247-x. PubMed PMID: 3456739.

107. Kim DH, Kobashi K. The role of intestinal flora in metabolism of phenolic sulfate esters. Biochem Pharmacol. 1986;35(20):3507-10. Epub 1986/10/15. doi: 10.1016/0006-2952(86)90619-2. PubMed PMID: 3464281.

108. Sundaram RS, Szumlanski C, Otterness D, van Loon JA, Weinshilboum RM. Human intestinal phenol sulfotransferase: assay conditions, activity levels and partial purification of the thermolabile form. Drug Metab Dispos. 1989;17(3):255-64. Epub 1989/05/01. PubMed PMID: 2568905.

109. Riches Z, Stanley EL, Bloomer JC, Coughtrie MW. Quantitative evaluation of the expression and activity of five major sulfotransferases (SULTs) in human tissues: the SULT “pie”. Drug Metab Dispos. 2009;37(11):2255-61. Epub 2009/08/15. doi: 10.1124/dmd.109.028399. PubMed PMID: 19679676; PMCID: PMC2774979.

110. Coughtrie MWH. Function and organization of the human cytosolic sulfotransferase (SULT) family. Chem Biol Interact. 2016;259(Pt A):2-7. Epub 2016/05/14. doi: 10.1016/j.cbi.2016.05.005. PubMed PMID: 27174136.

111. Vijay N, Morris ME. Role of monocarboxylate transporters in drug delivery to the brain. Curr Pharm Des. 2014;20(10):1487-98. Epub 2013/06/25. doi: 10.2174/13816128113199990462. PubMed PMID: 23789956; PMCID: PMC4084603.

112. Kobayashi S, Konishi Y. Transepithelial transport of flavanone in intestinal Caco-2 cell monolayers. Biochem Biophys Res Commun. 2008;368(1):23-9. Epub 2008/01/15. doi: 10.1016/j.bbrc.2007.12.185. PubMed PMID: 18190788.

113. Hoverstad T, Carlstedt-Duke B, Lingaas E, Norin E, Saxerholt H, Steinbakk M, Midtvedt T. Influence of oral intake of seven different antibiotics on faecal shortchain fatty acid excretion in healthy subjects. Scand J Gastroenterol. 1986;21(8):997-1003. Epub 1986/10/01. doi: 10.3109/00365528608996411. PubMed PMID: 3775265.

114. Borthakur A, Priyamvada S, Kumar A, Natarajan AA, Gill RK, Alrefai WA, Dudeja PK. A novel nutrient sensing mechanism underlies substrate-induced regulation of monocarboxylate transporter-1. Am J Physiol Gastrointest Liver Physiol. 2012;303(10):G1126-33. Epub 2012/09/18. doi: 10.1152/ajpgi.00308.2012. PubMed PMID: 22982338; PMCID: PMC3517653.

115. Gryp T, De Paepe K, Vanholder R, Kerckhof FM, Van Biesen W, Van de Wiele T, Verbeke F, Speeckaert M, Joossens M, Couttenye MM, Vaneechoutte M, Glorieux G. Gut microbiota generation of protein-bound uremic toxins and related metabolites is not altered at different stages of chronic kidney disease. Kidney Int. 2020. Epub 2020/04/23. doi: 10.1016/j.kint.2020.01.028. PubMed PMID: 32317112.

116. Loftfield E, Vogtmann E, Sampson JN, Moore SC, Nelson H, Knight R, Chia N, Sinha R. Comparison of Collection Methods for Fecal Samples for Discovery Metabolomics in Epidemiologic Studies. Cancer Epidemiol Biomarkers Prev. 2016;25(11):1483-90. Epub 2016/11/03. doi: 10.1158/1055-9965.EPI-16-0409. PubMed PMID: 27543620; PMCID: PMC5093035.

117. Mutsaers HA, Caetano-Pinto P, Seegers AE, Dankers AC, van den Broek PH, Wetzels JF, van den Brand JA, van den Heuvel LP, Hoenderop JG, Wilmer MJ, Masereeuw R. Proximal tubular efflux transporters involved in renal excretion of p-cresyl sulfate and p-cresyl glucuronide: Implications for chronic kidney disease pathophysiology. Toxicol In Vitro. 2015;29(7):1868-77. Epub 2015/07/29. doi: 10.1016/j.tiv.2015.07.020. PubMed PMID: 26216510.

118. Maliepaard M, Scheffer GL, Faneyte IF, van Gastelen MA, Pijnenborg AC, Schinkel AH, van De Vijver MJ, Scheper RJ, Schellens JH. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res. 2001;61(8):3458-64. Epub 2001/04/20. PubMed PMID: 11309308.

119. Seithel A, Karlsson J, Hilgendorf C, Bjorquist A, Ungell AL. Variability in mRNA expression of ABC- and SLC-transporters in human intestinal cells: comparison between human segments and Caco-2 cells. Eur J Pharm Sci. 2006;28(4):291-9. Epub 2006/05/18. doi: 10.1016/j.ejps.2006.03.003. PubMed PMID: 16704924.

120. Miyamoto Y, Watanabe H, Noguchi T, Kotani S, Nakajima M, Kadowaki D, Otagiri M, Maruyama T. Organic anion transporters play an important role in the uptake of p-cresyl sulfate, a uremic toxin, in the kidney. Nephrol Dial Transplant. 2011;26(8):2498-502. Epub 2011/02/10. doi: 10.1093/ndt/gfq785. PubMed PMID: 21303967.

121. Mutsaers HA, Wilmer MJ, Reijnders D, Jansen J, van den Broek PH, Forkink M, Schepers E, Glorieux G, Vanholder R, van den Heuvel LP, Hoenderop JG, Masereeuw R. Uremic toxins inhibit renal metabolic capacity through interference with glucuronidation and mitochondrial respiration. Biochim Biophys Acta. 2013;1832(1):142-50. Epub 2012/09/29. doi: 10.1016/j.bbadis.2012.09.006. PubMed PMID: 23017367.

122. Watanabe H, Sakaguchi Y, Sugimoto R, Kaneko K, Iwata H, Kotani S, Nakajima M, Ishima Y, Otagiri M, Maruyama T. Human organic anion transporters function as a high-capacity transporter for p-cresyl sulfate, a uremic toxin. Clin Exp Nephrol. 2014;18(5):814-20. Epub 2013/11/05. doi: 10.1007/s10157-013-0902-9. PubMed PMID: 24185403.

123. Peng YH, Sweet DH, Lin SP, Yu CP, Lee Chao PD, Hou YC. Green tea inhibited the elimination of nephro-cardiovascular toxins and deteriorated the renal function in rats with renal failure. Sci Rep. 2015;5:16226. Epub 2015/11/11. doi: 10.1038/srep16226. PubMed PMID: 26552961; PMCID: PMC4639770.

124. Hsueh CH, Yoshida K, Zhao P, Meyer TW, Zhang L, Huang SM, Giacomini KM. Identification and Quantitative Assessment of Uremic Solutes as Inhibitors of Renal Organic Anion Transporters, OAT1 and OAT3. Mol Pharm. 2016;13(9):3130-40. Epub 2016/07/29. doi: 10.1021/acs.molpharmaceut.6b00332. PubMed PMID: 27467266.

125. Sun W, Wu RR, van Poelje PD, Erion MD. Isolation of a family of organic anion transporters from human liver and kidney. Biochem Biophys Res Commun. 2001;283(2):417-22. Epub 2001/05/01. doi: 10.1006/bbrc.2001.4774. PubMed PMID: 11327718.

126. Hilgendorf C, Ahlin G, Seithel A, Artursson P, Ungell AL, Karlsson J. Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab Dispos. 2007;35(8):1333-40. Epub 2007/05/15. doi: 10.1124/dmd.107.014902. PubMed PMID: 17496207.

127. Nicol MR, Fedoriw Y, Mathews M, Prince HM, Patterson KB, Geller E, Mollan K, Mathews S, Kroetz DL, Kashuba AD. Expression of six drug transporters in vaginal, cervical, and colorectal tissues: Implications for drug disposition in HIV prevention. J Clin Pharmacol. 2014;54(5):574-83. Epub 2013/12/18. doi: 10.1002/jcph.248. PubMed PMID: 24343710; PMCID: PMC4061289.

128. Jariyawat S, Sekine T, Takeda M, Apiwattanakul N, Kanai Y, Sophasan S, Endou H. The interaction and transport of beta-lactam antibiotics with the cloned rat renal organic anion transporter 1. J Pharmacol Exp Ther. 1999;290(2):672-7. Epub 1999/07/20. PubMed PMID: 10411577.

129. Takeda M, Babu E, Narikawa S, Endou H. Interaction of human organic anion transporters with various cephalosporin antibiotics. Eur J Pharmacol. 2002;438(3):137-42. Epub 2002/03/23. doi: 10.1016/s0014-2999(02)01306-7. PubMed PMID: 11909604.

130. Akiki TJ, Averill CL, Wrocklage KM, Schweinsburg B, Scott JC, Martini B, Averill LA, Southwick SM, Krystal JH, Abdallah CG. The Association of PTSD Symptom Severity with Localized Hippocampus and Amygdala Abnormalities. Chronic Stress (Thousand Oaks). 2017;1. Epub 2017/08/22. doi: 10.1177/2470547017724069. PubMed PMID: 28825050; PMCID: PMC5562232.

131. Luo SS, Yu CP, Hsieh YW, Chao PL, Sweet DH, Hou YC, Lin SP. Effects of antibiotics on the pharmacokinetics of indoxyl sulfate, a nephro-cardiovascular toxin. Xenobiotica. 2020;50(5):588-92. Epub 2019/08/27. doi: 10.1080/00498254.2019.1660433. PubMed PMID: 31448977.

132. DeMoss RD, Moser K. Tryptophanase in diverse bacterial species. J Bacteriol. 1969;98(1):167-71. Epub 1969/04/01. PubMed PMID: 5781572; PMCID: PMC249919.

133. Kaur H, Bose C, Mande SS. Tryptophan Metabolism by Gut Microbiome and Gut-Brain-Axis: An in silico Analysis. Front Neurosci. 2019;13:1365. Epub 2020/01/11. doi: 10.3389/fnins.2019.01365. PubMed PMID: 31920519; PMCID: PMC6930238.

134. Amaretti A, Gozzoli C, Simone M, Raimondi S, Righini L, Perez-Brocal V, Garcia-Lopez R, Moya A, Rossi M. Profiling of Protein Degraders in Cultures of Human Gut Microbiota. Front Microbiol. 2019;10:2614. Epub 2019/12/06. doi: 10.3389/fmicb.2019.02614. PubMed PMID: 31803157; PMCID: PMC6874058.

135. Darkoh C, Chappell C, Gonzales C, Okhuysen P. A rapid and specific method for the detection of indole in complex biological samples. Appl Environ Microbiol. 2015;81(23):8093-7. Epub 2015/09/20. doi: 10.1128/aem.02787-15. PubMed PMID: 26386049; PMCID: PMC4651089.

136. Banoglu E, Jha GG, King RS. Hepatic microsomal metabolism of indole to indoxyl, a precursor of indoxyl sulfate. Eur J Drug Metab Pharmacokinet. 2001;26(4):235-40. Epub 2002/01/26. doi: 10.1007/bf03226377. PubMed PMID: 11808865; PMCID: PMC2254176.

137. Gillam EM, Notley LM, Cai H, De Voss JJ, Guengerich FP. Oxidation of indole by cytochrome P450 enzymes. Biochemistry. 2000;39(45):13817-24. Epub 2000/11/15. doi: 10.1021/bi001229u. PubMed PMID: 11076521.

138. Banoglu E, King RS. Sulfation of indoxyl by human and rat aryl (phenol) sulfotransferases to form indoxyl sulfate. Eur J Drug Metab Pharmacokinet. 2002;27(2):135-40. Epub 2002/06/18. doi: 10.1007/bf03190428. PubMed PMID: 12064372; PMCID: PMC2254172.

139. King LJ, Parke DV, Williams RT. The metabolism of [2-14C] indole in the rat. Biochem J. 1966;98(1):266-77. Epub 1966/01/01. doi: 10.1042/bj0980266. PubMed PMID: 5328168; PMCID: PMC1264825.

140. Morimoto K, Tominaga Y, Agatsuma Y, Miyamoto M, Kashiwagura S, Takahashi A, Sano Y, Yano K, Kakinuma C, Ogihara T, Tomita M. Intestinal secretion of indoxyl sulfate as a possible compensatory excretion pathway in chronic kidney disease. Biopharm Drug Dispos. 2018;39(7):328-34. Epub 2018/07/06. doi: 10.1002/bdd.2149. PubMed PMID: 29975986.

141. Konopelski P, Konop M, Gawrys-Kopczynska M, Podsadni P, Szczepanska A, Ufnal M. Indole-3-Propionic Acid, a Tryptophan-Derived Bacterial Metabolite, Reduces Weight Gain in Rats. Nutrients. 2019;11(3). Epub 2019/03/14. doi: 10.3390/nu11030591. PubMed PMID: 30862081; PMCID: PMC6471155.

142. Gertsman I, Gangoiti JA, Nyhan WL, Barshop BA. Perturbations of tyrosine metabolism promote the indolepyruvate pathway via tryptophan in host and microbiome. Mol Genet Metab. 2015;114(3):431-7. Epub 2015/02/15. doi: 10.1016/j.ymgme.2015.01.005. PubMed PMID: 25680927.

143. Dodd D, Spitzer MH, Van Treuren W, Merrill BD, Hryckowian AJ, Higginbottom SK, Le A, Cowan TM, Nolan GP, Fischbach MA, Sonnenburg JL. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature. 2017;551(7682):648-52. Epub 2017/11/24. doi: 10.1038/nature24661. PubMed PMID: 29168502; PMCID: PMC5850949.

144. Elsden SR, Hilton MG, Waller JM. The end products of the metabolism of aromatic amino acids by Clostridia. Arch Microbiol. 1976;107(3):283-8. Epub 1976/04/01. PubMed PMID: 1275638.

145. Elsden SR, Hilton MG. Amino acid utilization patterns in clostridial taxonomy. Arch Microbiol. 1979;123(2):137-41. Epub 1979/11/01. PubMed PMID: 539867.

146. Jellet JJ, Forrest TP, Macdonald IA, Marrie TJ, Holdeman LV. Production of indole-3-propanoic acid and 3-(p-hydroxyphenyl)propanoic acid by Clostridium sporogenes: a convenient thin-layer chromatography detection system. Can J Microbiol. 1980;26(4):448-53. Epub 1980/04/01. doi: 10.1139/m80-074. PubMed PMID: 7378938.

147. Wlodarska M, Luo C, Kolde R, d’Hennezel E, Annand JW, Heim CE, Krastel P, Schmitt EK, Omar AS, Creasey EA, Garner AL, Mohammadi S, O’Connell DJ, Abubucker S, Arthur TD, Franzosa EA, Huttenhower C, Murphy LO, Haiser HJ, Vlamakis H, Porter JA, Xavier RJ. Indoleacrylic Acid Produced by Commensal Peptostreptococcus Species Suppresses Inflammation. Cell Host Microbe. 2017;22(1):25-37.e6. Epub 2017/07/14. doi: 10.1016/j.chom.2017.06.007. PubMed PMID: 28704649; PMCID: PMC5672633.

148. Pavlova T, Vidova V, Bienertova-Vasku J, Janku P, Almasi M, Klanova J, Spacil Z. Urinary intermediates of tryptophan as indicators of the gut microbial metabolism. Anal Chim Acta. 2017;987:72-80. Epub 2017/09/17. doi: 10.1016/j.aca.2017.08.022. PubMed PMID: 28916042.

149. Metzner L, Kottra G, Neubert K, Daniel H, Brandsch M. Serotonin, L-tryptophan, and tryptamine are effective inhibitors of the amino acid transport system PAT1. FASEB J. 2005;19(11):1468-73. Epub 2005/08/30. doi: 10.1096/fj.05-3683com. PubMed PMID: 16126914.

150. Roshchina VV. Evolutionary Considerations of Neurotransmitters in Microbial, Plant, and Animal Cells. In: Lyte M, Freestone PPE, editors. Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health. New York, NY: Springer New York; 2010. p. 17-52.

151. Erspamer V. Occurrence of indolealkylamines in nature. In: Erspamer V, editor. 5-Hydroxytryptamine and Related Indolealkylamines. Berlin, Heidelberg: Springer Berlin Heidelberg; 1966. p. 132-81.

152. Bertaccini G. Tissue 5-hydroxytryptamine and urinary 5-hydroxyindoleacetic acid after partial or total removal of the gastro-intestinal tract in the rat. J Physiol. 1960;153(2):239-49. Epub 1960/09/01. doi: 10.1113/jphysiol.1960.sp006532. PubMed PMID: 16992061; PMCID: PMC1359746.

153. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):264-76. Epub 2015/04/11. doi: 10.1016/j.cell.2015.02.047. PubMed PMID: 25860609; PMCID: PMC4393509.

154. Reigstad CS, Salmonson CE, Rainey JF, 3rd, Szurszewski JH, Linden DR, Sonnenburg JL, Farrugia G, Kashyap PC. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 2015;29(4):1395-403. Epub 2015/01/01. doi: 10.1096/fj.14-259598. PubMed PMID: 25550456; PMCID: PMC4396604.

155. Cummings JH. Short chain fatty acids. In: Gibson GR, Macfarlane GT, editors. Human Colonic Bacteria : Role in Nutrition, Physiology and Pathology. Boca Raton, FL: CRC Press; 1995. p. 101-30.

156. Hoverstad T, Midtvedt T. Short-chain fatty acids in germfree mice and rats. J Nutr. 1986;116(9):1772-6. Epub 1986/09/01. doi: 10.1093/jn/116.9.1772. PubMed PMID: 3761032.

157. Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone RL, Petersen KF, Kibbey RG, Goodman AL, Shulman GI. Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature. 2016;534(7606):213-7. Epub 2016/06/10. doi: 10.1038/nature18309. PubMed PMID: 27279214; PMCID: PMC4922538.

158. Deshpande A, Hurless K, Cadnum JL, Chesnel L, Gao L, Chan L, Kundrapu S, Polinkovsky A, Donskey CJ. Effect of Fidaxomicin versus Vancomycin on Susceptibility to Intestinal Colonization with Vancomycin-Resistant Enterococci and Klebsiella pneumoniae in Mice. Antimicrob Agents Chemother. 2016;60(7):3988-93. Epub 2016/04/20. doi: 10.1128/aac.02590-15. PubMed PMID: 27090175; PMCID: PMC4914684.

159. Ahmed S, Macfarlane GT, Fite A, McBain AJ, Gilbert P, Macfarlane S. Mucosa-associated bacterial diversity in relation to human terminal ileum and colonic biopsy samples. Appl Environ Microbiol. 2007;73(22):7435-42. Epub 2007/09/25. doi: 10.1128/aem.01143-07. PubMed PMID: 17890331; PMCID: PMC2168195.

160. Simon GL, Gorbach SL. Intestinal flora in health and disease. Gastroenterology. 1984;86(1):174-93. doi: 10.1016/0016-5085(84)90606-1.

161. Laux DC, Cohen PS, Conway T. Role of the Mucus Layer in Bacterial Colonization of the Intestine. In: Nataro J, Cohen P, Mobley H, Weiser J, editors. Colonization of Mucosal Surfaces. Washington, DC: ASM Press; 2005. p. 119-212.

162. Zoetendal EG, Raes J, van den Bogert B, Arumugam M, Booijink CC, Troost FJ, Bork P, Wels M, de Vos WM, Kleerebezem M. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. The ISME journal. 2012;6(7):1415-26. Epub 2012/01/20. doi: 10.1038/ismej.2011.212. PubMed PMID: 22258098; PMCID: PMC3379644.

163. Schantz M, Erk T, Richling E. Metabolism of green tea catechins by the human small intestine. Biotechnol J. 2010;5(10):1050-9. Epub 2010/10/12. doi: 10.1002/biot.201000214. PubMed PMID: 20931601.

164. van Kessel SP, Frye AK, El-Gendy AO, Castejon M, Keshavarzian A, van Dijk G, El Aidy S. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease. Nature communications. 2019;10(1):310. Epub 2019/01/20. doi: 10.1038/s41467-019-08294-y. PubMed PMID: 30659181; PMCID: PMC6338741.

165. Aronov PA, Luo FJ, Plummer NS, Quan Z, Holmes S, Hostetter TH, Meyer TW. Colonic contribution to uremic solutes. J Am Soc Nephrol. 2011;22(9):1769-76. Epub 2011/07/26. doi: 10.1681/ASN.2010121220. PubMed PMID: 21784895; PMCID: PMC3171947.

166. Mair RD, Sirich TL, Plummer NS, Meyer TW. Characteristics of Colon-Derived Uremic Solutes. Clin J Am Soc Nephrol. 2018;13(9):1398-404. Epub 2018/08/09. doi: 10.2215/cjn.03150318. PubMed PMID: 30087103; PMCID: PMC6140561.

167. Willmann M, Vehreschild M, Biehl LM, Vogel W, Dorfel D, Hamprecht A, Seifert H, Autenrieth IB, Peter S. Distinct impact of antibiotics on the gut microbiome and resistome: a longitudinal multicenter cohort study. BMC Biol. 2019;17(1):76. Epub 2019/09/20. doi: 10.1186/s12915-019-0692-y. PubMed PMID: 31533707; PMCID: PMC6749691.

168. Farowski F, Els G, Tsakmaklis A, Higgins PG, Kahlert CR, Stein-Thoeringer CK, Bobardt JS, Dettmer-Wilde K, Oefner PJ, Vehreschild JJ, Vehreschild M. Assessment of urinary 3-indoxyl sulfate as a marker for gut microbiota diversity and abundance of Clostridiales. Gut microbes. 2019;10(2):133-41. Epub 2018/08/18. doi: 10.1080/19490976.2018.1502536. PubMed PMID: 30118620; PMCID: PMC6546351.

169. Rashid MU, Zaura E, Buijs MJ, Keijser BJ, Crielaard W, Nord CE, Weintraub A. Determining the Long-term Effect of Antibiotic Administration on the Human Normal Intestinal Microbiota Using Culture and Pyrosequencing Methods. Clin Infect Dis. 2015;60 Suppl 2:S77-84. Epub 2015/04/30. doi: 10.1093/cid/civ137. PubMed PMID: 25922405.

170. Segal LN, Clemente JC, Wu BG, Wikoff WR, Gao Z, Li Y, Ko JP, Rom WN, Blaser MJ, Weiden MD. Randomised, double-blind, placebo-controlled trial with azithromycin selects for anti-inflammatory microbial metabolites in the emphysematous lung. Thorax. 2017;72(1):13-22. Epub 2016/08/04. doi: 10.1136/thoraxjnl-2016-208599. PubMed PMID: 27486204; PMCID: PMC5329050.

171. P.rez-Cobas AE, Artacho A, Knecht H, Ferr.s ML, Friedrichs A, Ott SJ, Moya A, Latorre A, Gosalbes MJ. Differential effects of antibiotic therapy on the structure and function of human gut microbiota. PLoS One. 2013;8(11):e80201. Epub 2013/11/28. doi: 10.1371/journal.pone.0080201. PubMed PMID: 24282523; PMCID: PMC3839934.

172. Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 2008;6(11):e280. Epub 2008/11/21. doi: 10.1371/journal.pbio.0060280. PubMed PMID: 19018661; PMCID: PMC2586385.

173. Macfarlane S, Macfarlane GT. Proteolysis and amino acid fermentation. Human Colonic Bacteria: Role in Nutrition, Physiology, and Pathology. Boca Raton, FL: CRC Press; 1995. p. 75-100.

174. Nunez-Montiel OL, Thompson FS, Dowell VR, Jr. Norleucine-tyrosine broth for rapid identification of Clostridium difficile by gas-liquid chromatography. J Clin Microbiol. 1983;17(2):382-5. Epub 1983/02/01. PubMed PMID: 6833488; PMCID: PMC272645.

175. Darkoh C, Plants-Paris K, Bishoff D, DuPont HL. Clostridium difficile Modulates the Gut Microbiota by Inducing the Production of Indole, an Interkingdom Signaling and Antimicrobial Molecule. mSystems. 2019;4(2). Epub 2019/04/05. doi:10.1128/mSystems.00346-18. PubMed PMID: 30944877; PMCID: PMC6426650.

176. Winter J, Popoff MR, Grimont P, Bokkenheuser VD. Clostridium orbiscindens sp. nov., a human intestinal bacterium capable of cleaving the flavonoid C-ring. Int J Syst Bacteriol. 1991;41(3):355-7. Epub 1991/07/01. doi: 10.1099/00207713-41-3-355. PubMed PMID: 1883711.

177. Schoefer L, Mohan R, Schwiertz A, Braune A, Blaut M. Anaerobic degradation of flavonoids by Clostridium orbiscindens. Appl Environ Microbiol. 2003;69(10):5849-54. Epub 2003/10/09. doi: 10.1128/aem.69.10.5849-5854.2003. PubMed PMID:14532034; PMCID: PMC201214.

178. Peng X, Zhang Z, Zhang N, Liu L, Li S, Wei H. In vitro catabolism of quercetin by human fecal bacteria and the antioxidant capacity of its catabolites. Food Nutr Res. 2014;58. Epub 2014/04/26. doi: 10.3402/fnr.v58.23406. PubMed PMID: 24765061; PMCID: PMC3991839.

179. Hur HG, Beger RD, Heinze TM, Lay JO, Jr., Freeman JP, Dore J, Rafii F. Isolation of an anaerobic intestinal bacterium capable of cleaving the C-ring of the isoflavonoid daidzein. Arch Microbiol. 2002;178(1):8-12. Epub 2002/06/19. doi: 10.1007/s00203-002-0414-6. PubMed PMID: 12070764.

180. van Duynhoven J, van der Hooft JJ, van Dorsten FA, Peters S, Foltz M, Gomez-Roldan V, Vervoort J, de Vos RC, Jacobs DM. Rapid and sustained systemic circulation of conjugated gut microbial catabolites after single-dose black tea extract consumption. J Proteome Res. 2014;13(5):2668-78. Epub 2014/03/29. doi: 10.1021/pr5001253. PubMed PMID: 24673575.

181. Law WS, Huang PY, Ong ES, Ong CN, Li SF, Pasikanti KK, Chan EC. Metabonomics investigation of human urine after ingestion of green tea with gas chromatography/mass spectrometry, liquid chromatography/mass spectrometry and (1)H NMR spectroscopy. Rapid Commun Mass Spectrom. 2008;22(16):2436-46. Epub 2008/07/18. doi: 10.1002/rcm.3629. PubMed PMID: 18634125.

182. Jacobs DM, Fuhrmann JC, van Dorsten FA, Rein D, Peters S, van Velzen EJ, Hollebrands B, Draijer R, van Duynhoven J, Garczarek U. Impact of short-term intake of red wine and grape polyphenol extract on the human metabolome. J Agric Food Chem. 2012;60(12):3078-85. Epub 2012/03/01. doi: 10.1021/jf2044247. PubMed PMID: 22372405.

183. Ling WH, H.nninen O. Shifting from a conventional diet to an uncooked vegan diet reversibly alters fecal hydrolytic activities in humans. J Nutr. 1992;122(4):924-30. Epub 1992/04/01. doi: 10.1093/jn/122.4.924. PubMed PMID: 1552366.

184. Barrios C, Beaumont M, Pallister T, Villar J, Goodrich JK, Clark A, Pascual J, Ley RE, Spector TD, Bell JT, Menni C. Gut-Microbiota-Metabolite Axis in Early Renal Function Decline. PLoS One. 2015;10(8):e0134311. Epub 2015/08/05. doi: 10.1371/journal.pone.0134311. PubMed PMID: 26241311; PMCID: PMC4524635.

185. Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, Iwasaki A. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci U S A. 2011;108(13):5354-9. Epub 2011/03/16. doi:10.1073/pnas.1019378108. PubMed PMID: 21402903; PMCID: PMC3069176.

186. Jaskiw GE, Obrenovich ME, Donskey CJ. The phenolic interactome and gut microbiota: opportunities and challenges in developing applications for schizophrenia and autism. Psychopharmacology (Berl). 2019;236(5):1471-89. Epub 2019/06/15. doi:http://dx.doi.org/10.1007/s00213-019-05267-3. PubMed PMID: 31197432.