Plasma Extracellular Vesicle Subtypes May be Useful as Potential Biomarkers of Immune Activation in People With HIV

Main Article Content

Wilfried Wenceslas Bazié
Julien Boucher
Julien Vitry
Benjamin Goyer
Jean Pierre Routy
Cécile Tremblay
Sylvie Trottier
Mohammad-Ali Jenabian
Patrick Provost
Michel Alary
Caroline Gilbert


Background: Extracellular vesicles (EVs) are intercellular messengers with epigenetic potential since they can shuttle microRNA (miRNA). EVs and miRNA play a role in human immunodeficiency virus (HIV) infection immunopathogenesis. Chronic immune activation and systemic inflammation during HIV infection despite effective antiretroviral therapy (ART) are associated with non-acquired immunodeficiency syndrome (AIDS) comorbidities in people living with HIV (PLWH). Analysis of plasma EVs and their miRNA content may be useful as immune activation or inflammatory biomarkers in PLWH receiving ART. In this study, we hypothesized that the number, size, and miRNA of large and small EVs could reflect immune activation associated with an elevated CD8 T-cell count or a low CD4/CD8 ratio in PLWH.

Methods: Plasma EVs subtype purified from PLWH and uninfected controls were sized using dynamic light scattering and quantified using flow cytometry and acetylcholine esterase (AChE) activity. Expression of mature miRNAs miR-92, miR-155, miR-223 was measured by quantitative reverse-transcriptase polymerase chain reaction in EVs and leucocytes.

Results: HIV infection induces increased production of small EVs in plasma. EV subtypes were differentially enriched in miR-92, miR-155, and miR-223. Positive correlations between CD8 T-cell count and large EVs abundance and small EVs AChE activity were observed. CD4/CD8 ratio was negatively correlated with small EV AChE activity, and miRNA-155 level per small EV was negatively correlated with CD8 T-cell count.

Conclusions: These findings suggest that quantifying large or small EVs and profiling miRNA content per EV might provide new functional biomarkers of immune activation and inflammation.


Download data is not yet available.

Article Details



1. Imami N, Hardy G, Burton C, Pires A, Pido-Lopez J, Moss R, Gazzard B, Gotch F. Immune responses and reconstitution in HIV-1 infected individuals: impact of anti-retroviral therapy, cytokines and therapeutic vaccination. Immunology letters. 2001;79(1-2):63-76. Epub 2001/10/12. doi: 10.1016/s0165-2478(01)00267-x. PubMed PMID: 11595291.

2. Vinikoor MJ, Cope A, Gay CL, Ferrari G, McGee KS, Kuruc JD, Lennox JL, Margolis DM, Hicks CB, Eron JJ. Antiretroviral therapy initiated during acute HIV infection fails to prevent persistent T-cell activation. Journal of acquired immune deficiency syndromes. 2013;62(5):505-8. Epub 2013/01/15. doi: 10.1097/QAI.0b013e318285cd33. PubMed PMID: 23314410; PMCID: PMC3683110.

3. Kulkarni R, Prasad A. Exosomes Derived from HIV-1 Infected DCs Mediate Viral trans-Infection via Fibronectin and Galectin-3. Scientific reports. 2017;7(1):14787. Epub 2017/11/03. doi: 10.1038/s41598-017-14817-8. PubMed PMID: 29093555; PMCID: PMC5665889.

4. Hong X, Schouest B, Xu H. Effects of exosome on the activation of CD4+ T cells in rhesus macaques: a potential application for HIV latency reactivation. Scientific reports. 2017;7(1):15611. Epub 2017/11/17. doi: 10.1038/s41598-017-15961-x. PubMed PMID: 29142313; PMCID: PMC5688118.

5. Arakelyan A, Fitzgerald W, Zicari S, Vanpouille C, Margolis L. Extracellular Vesicles Carry HIV Env and Facilitate Hiv Infection of Human Lymphoid Tissue. Scientific reports. 2017;7(1):1695. Epub 2017/05/12. doi: 10.1038/s41598-017-01739-8. PubMed PMID: 28490736; PMCID: PMC5431974.

6. Mfunyi CM, Vaillancourt M, Vitry J, Nsimba Batomene TR, Posvandzic A, Lambert AA, Gilbert C. Exosome release following activation of the dendritic cell immunoreceptor: a potential role in HIV-1 pathogenesis. Virology. 2015;484:103-12. Epub 2015/06/21. doi: 10.1016/j.virol.2015.05.013. PubMed PMID: 26092249.

7. Hubert A, Barbeau B, Subra C, Bissonnette L, Gilbert C. Role and future applications of extracellular vesicles in HIV-1 pathogenesis. Future Virology. 2015;10(4):357-70. doi: 10.2217/fvl.15.11.

8. Caroline S, Chantal B, Sophie P, Sebastien S, Caroline G. Exosomes Decrease In Vitro Infectivity of HIV-1 Preparations: Implication for CD4+T Lymphocyte Depletion In Vivo. Understanding HIV/AIDS Management and Care-Pandemic Approaches in the 21st Century2011. p. 99.

9. Subra C. Dendritic Cells Pulsed with HIV-1 Release Exosomes that Promote Apoptosis in Cd4+ T Lymphocytes. Journal of Clinical & Cellular Immunology. 2013;04(01):001. doi: 10.4172/2155-9899.S7-001. 10. Pulliam L, Sun B, Mustapic M, Chawla S, Kapogiannis D. Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer’s disease. Journal of neurovirology. 2019;25(5):702-9. Epub 2019/01/06. doi: 10.1007/s13365-018-0695-4. PubMed PMID: 30610738; PMCID: PMC7372698.

11. Lokossou AG, Toudic C, Nguyen PT, Elisseeff X, Vargas A, Rassart E, Lafond J, Leduc L, Bourgault S, Gilbert C, Scorza T, Tolosa J, Barbeau B. Endogenous retrovirus-encoded Syncytin-2 contributes to exosome-mediated immunosuppression of T cells. Biology of reproduction. 2020;102(1):185-98. Epub 2019/07/19. doi: 10.1093/biolre/ioz124. PubMed PMID: 31318021.

12. Joncas FH, Lucien F, Rouleau M, Morin F, Leong HS, Pouliot F, Fradet Y, Gilbert C, Toren P. Plasma extracellular vesicles as phenotypic biomarkers in prostate cancer patients. The Prostate. 2019;79(15):1767-76. Epub 2019/09/03. doi: 10.1002/pros.23901. PubMed PMID: 31475741.

13. Hubert A, Subra C, Jenabian MA, Tremblay Labrecque PF, Tremblay C, Laffont B, Provost P, Routy JP, Gilbert C. Elevated Abundance, Size, and MicroRNA Content of Plasma Extracellular Vesicles in Viremic HIV-1+ Patients: Correlations With Known Markers of Disease Progression. Journal of acquired immune deficiency syndromes. 2015;70(3):219-27. Epub 2015/07/17. doi: 10.1097/QAI.0000000000000756. PubMed PMID: 26181817; PMCID: PMC4627170.

14. Vasconcelos MH, Caires HR, Abols A, Xavier CPR, Line A. Extracellular vesicles as a novel source of biomarkers in liquid biopsies for monitoring cancer progression and drug resistance. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy. 2019;47:100647. Epub 2019/11/11. doi: 10.1016/j.drup.2019.100647. PubMed PMID: 31704541.

15. Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual review of cell and developmental biology. 2014;30:255-89. Epub 2014/10/08. doi: 10.1146/annurev-cellbio-101512-122326. PubMed PMID: 25288114; PMCID: 25288114.

16. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. The Journal of Cell Biology. 2013;200(4):373-83. Epub 2013/02/20. doi: 10.1083/jcb.201211138. PubMed PMID: 23420871; PMCID: PMC3575529.

17. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nature reviews Molecular cell biology. 2018;19(4):213-28. Epub 2018/01/18. doi: 10.1038/nrm.2017.125. PubMed PMID: 29339798.

18. Tricarico C, Clancy J, D’Souza-Schorey C. Biology and biogenesis of shed microvesicles. Small GTPases. 2017;8(4):220-32. Epub 2016/08/06. doi: 10.1080/21541248.2016.1215283. PubMed PMID: 27494381; PMCID: PMC5680703.

19. Bang C, Thum T. Exosomes: new players in cell-cell communication. The international journal of biochemistry & cell biology. 2012;44(11):2060-4. Epub 2012/08/21. doi: 10.1016/j.biocel.2012.08.007. PubMed PMID: 22903023.

20. Crenshaw BJ, Gu L, Sims B, Matthews QL. Exosome biogenesis and biological function in response to viral infections. The open virology journal. 2018;12:134–48. doi: 10.2174/1874357901812010134. PubMed PMID: 30416610; PMCID: PMC6187740.

21. Ellwanger JH, Veit TD, Chies JAB. Exosomes in HIV infection: A review and critical look. Infection, Genetics and Evolution. 2017;53:146-54. Epub 2017/05/27. doi: 10.1016/j.meegid.2017.05.021. PubMed PMID: 28546080.

22. Madison MN, Okeoma CM. Exosomes: Implications in HIV-1 Pathogenesis. Viruses. 2015;7(7):4093-118. Epub 2015/07/25. doi: 10.3390/v7072810. PubMed PMID: 26205405; PMCID: PMC4517139.

23. Meldolesi J. Extracellular vesicles, news about their role in immune cells: physiology, pathology and diseases. Clinical & Experimental Immunology. 2019;196(3):318-

27. Epub 2019/02/14. doi: 10.1111/cei.13274. PubMed PMID: 30756386; PMCID:PMC6514371.

24. Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nature Reviews Immunology. 2014;14(3):195-208. Epub 2014/02/26. doi: 10.1038/nri3622. PubMed PMID: 24566916; PMCID: PMC4350779.

25. Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4(1):27066. Epub 2015/05/17. doi: 10.3402/jev.v4.27066. PubMed PMID: 25979354; PMCID: PMC4433489.

26. Fitzgerald W, Freeman ML, Lederman MM, Vasilieva E, Romero R, Margolis L. A System of Cytokines Encapsulated in ExtraCellular Vesicles. Scientific reports. 2018;8(1):8973. Epub 2018/06/14. doi: 10.1038/s41598-018-27190-x. PubMed PMID: 29895824; PMCID: PMC5997670.

27. Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, Liebler DC, Ping J, Liu Q, Evans R, Fissell WH, Patton JG, Rome LH, Burnette DT, Coffey RJ. Reassessment of Exosome Composition. Cell. 2019;177(2):428-45 e18. Epub 2019/04/06. doi: 10.1016/j.cell.2019.02.029. PubMed PMID: 30951670; PMCID: PMC6664447.

28. Swaminathan S, Murray DD, Kelleher AD. miRNAs and HIV: unforeseen determinants of host-pathogen interaction. Immunological reviews. 2013;254(1):265-80. Epub 2013/06/19. doi: 10.1111/imr.12077. PubMed PMID: 23772625.

29. Balasubramaniam M, Pandhare J, Dash C. Are microRNAs Important Players in HIV-1 Infection? An Update. Viruses. 2018;10(3):110. Epub 2018/03/08. doi: 10.3390/v10030110. PubMed PMID: 29510515; PMCID: PMC5869503.

30. Swaminathan G, Navas-Martin S, Martin-Garcia J. MicroRNAs and HIV-1 infection: antiviral activities and beyond. Journal of molecular biology. 2014;426(6):1178-97. Epub 2013/12/29. doi: 10.1016/j.jmb.2013.12.017. PubMed PMID: 24370931.

31. Bayraktar R, Van Roosbroeck K, Calin GA. Cell-to-cell communication: microRNAs as hormones. Molecular oncology. 2017;11(12):1673-86. Epub 2017/10/13. doi: 10.1002/1878-0261.12144. PubMed PMID: 29024380; PMCID: PMC5709614.

32. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL, de Gruijl TD, Wurdinger T, Middeldorp JM. Functional delivery of viral miRNAs via exosomes. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(14):6328-33. Epub 2010/03/23. doi: 10.1073/pnas.0914843107. PubMed PMID: 20304794; PMCID: PMC2851954.

33. Yoshikawa FSY, Teixeira FME, Sato MN, Oliveira L. Delivery of microRNAs by Extracellular Vesicles in Viral Infections: Could the News be Packaged? Cells. 2019;8(6):611. Epub 2019/06/21. doi: 10.3390/cells8060611. PubMed PMID: 31216738; PMCID: PMC6627707.

34. Delorme-Axford E, Donker RB, Mouillet JF, Chu T, Bayer A, Ouyang Y, Wang T, Stolz DB, Sarkar SN, Morelli AE, Sadovsky Y, Coyne CB. Human placental trophoblasts confer viral resistance to recipient cells. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(29):12048-53. Epub 2013/07/03. doi: 10.1073/pnas.1304718110. PubMed PMID: 23818581; PMCID: PMC3718097.

35. Bignami F, Pilotti E, Bertoncelli L, Ronzi P, Gulli M, Marmiroli N, Magnani G, Pinti M, Lopalco L, Mussini C, Ruotolo R, Galli M, Cossarizza A, Casoli C. Stable changes in CD4+ T lymphocyte miRNA expression after exposure to HIV-1. Blood. 2012;119(26):6259-67. Epub 2012/01/31. doi: 10.1182/blood-2011-09-379503. PubMed PMID: 22286198.

36. Yeung ML, Bennasser Y, Myers TG, Jiang G, Benkirane M, Jeang KT. Changes in microRNA expression profiles in HIV-1-transfected human cells. Retrovirology. 2005;2(1):81. Epub 2005/12/31. doi: 10.1186/1742-4690-2-81. PubMed PMID: 16381609; PMCID: PMC1352379.

37. Whisnant AW, Bogerd HP, Flores O, Ho P, Powers JG, Sharova N, Stevenson M, Chen CH, Cullen BR. In-depth analysis of the interaction of HIV-1 with cellular microRNA biogenesis and effector mechanisms. mBio. 2013;4(2):e000193. Epub 2013/04/18. doi: 10.1128/mBio.00193-13. PubMed PMID: 23592263; PMCID: PMC3634607.

38. Houzet L, Klase Z, Yeung ML, Wu A, Le SY, Quinones M, Jeang KT. The extent of sequence complementarity correlates with the potency of cellular miRNA-mediated restriction of HIV-1. Nucleic acids research. 2012;40(22):11684-96. Epub 2012/10/09. doi: 10.1093/nar/gks912. PubMed PMID: 23042677; PMCID: PMC3526334.

39. Huang J, Wang F, Argyris E, Chen K, Liang Z, Tian H, Huang W, Squires K, Verlinghieri G, Zhang H. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nature medicine. 2007;13(10):1241-7. Epub 2007/10/02. doi: 10.1038/nm1639. PubMed PMID: 17906637.

40. Bushman FD, Malani N, Fernandes J, D’Orso I, Cagney G, Diamond TL, Zhou H, Hazuda DJ, Espeseth AS, Konig R, Bandyopadhyay S, Ideker T, Goff SP, Krogan NJ, Frankel AD, Young JA, Chanda SK. Host cell factors in HIV replication: meta-analysis of genome-wide studies. PLoS Pathogens. 2009;5(5):e1000437. Epub 2009/05/30. doi: 10.1371/journal.ppat.1000437. PubMed PMID: 19478882; PMCID: PMC2682202.

41. Dziuba N, Ferguson MR, O’Brien WA, Sanchez A, Prussia AJ, McDonald NJ, Friedrich BM, Li G, Shaw MW, Sheng J, Hodge TW, Rubin DH, Murray JL. Identification of cellular proteins required for replication of human immunodeficiency virus type 1. AIDS research and human retroviruses. 2012;28(10):1329-39. Epub 2012/03/13. doi: 10.1089/AID.2011.0358. PubMed PMID: 22404213; PMCID: PMC3448097.

42. Friedrich BM, Dziuba N, Li G, Endsley MA, Murray JL, Ferguson MR. Host factors mediating HIV-1 replication. Virus research. 2011;161(2):101-14. Epub 2011/08/30. doi: 10.1016/j.virusres.2011.08.001. PubMed PMID: 21871504.

43. Duskova K, Nagilla P, Le HS, Iyer P, Thalamuthu A, Martinson J, Bar-Joseph Z, Buchanan W, Rinaldo C, Ayyavoo V. MicroRNA regulation and its effects on cellular transcriptome in human immunodeficiency virus-1 (HIV-1) infected individuals with distinct viral load and CD4 cell counts. BMC infectious diseases. 2013;13(1):250. Epub 2013/06/01. doi: 10.1186/1471-2334-13-250. PubMed PMID: 23721325; PMCID: PMC3680326.

44. O’Connell KA, Bailey JR, Blankson JN. Elucidating the elite: mechanisms of control in HIV-1 infection. Trends in pharmacological sciences. 2009;30(12):631-7. Epub 2009/10/20. doi: 10.1016/ PubMed PMID: 19837464.

45. Vigorito E, Kohlhaas S, Lu D, Leyland R. miR-155: an ancient regulator of the immune system. Immunological reviews. 2013;253(1):146-57. Epub 2013/04/05. doi: 10.1111/imr.12057. PubMed PMID: 23550644.

46. Elton TS, Selemon H, Elton SM, Parinandi NL. Regulation of the MIR155 host gene in physiological and pathological processes. Gene. 2013;532(1):1-12. Epub 2012/12/19. doi: 10.1016/j.gene.2012.12.009. PubMed PMID: 23246696.

47. Ruelas DS, Chan JK, Oh E, Heidersbach AJ, Hebbeler AM, Chavez L, Verdin E, Rape M, Greene WC. MicroRNA-155 Reinforces HIV Latency. Journal of Biological Chemistry. 2015;290(22):13736-48. Epub 2015/04/16. doi: 10.1074/jbc.M115.641837. PubMed PMID: 25873391; PMCID: PMC4447952.

48. Swaminathan G, Rossi F, Sierra LJ, Gupta A, Navas-Martin S, Martin-Garcia J. A role for microRNA-155 modulation in the anti-HIV-1 effects of Toll-like receptor 3 stimulation in macrophages. PLoS Pathogens. 2012;8(9):e1002937. Epub 2012/10/03. doi: 10.1371/journal.ppat.1002937. PubMed PMID: 23028330; PMCID: PMC3447756.

49. Ruelas DS, Greene WC. An integrated overview of HIV-1 latency. Cell. 2013;155(3):519-29. Epub 2013/11/19. doi: 10.1016/j.cell.2013.09.044. PubMed PMID: 24243012; PMCID: PMC4361081.

50. Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O, Brummelkamp TR, Fleming MD, Camargo FD. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature. 2008;451(7182):1125-9. doi: 10.1038/nature06607. PubMed PMID: 18278031.

51. Bauernfeind F, Rieger A, Schildberg FA, Knolle PA, Schmid-Burgk JL, Hornung V. NLRP3 inflammasome activity is negatively controlled by miR-223. The Journal of Immunology. 2012;189(8):4175-81. doi: 10.4049/jimmunol.1201516. PubMed PMID: 22984082.

52. Haneklaus M, Gerlic M, O’Neill LA, Masters S. miR‐223: infection, inflammation and cancer. Journal of internal medicine. 2013;274(3):215-26. doi: 10.1111/joim.12099. PubMed PMID: 23772809; PMCID: PMC7166861.

53. Wang X, Ye L, Hou W, Zhou Y, Wang YJ, Metzger DS, Ho WZ. Cellular microRNA expression correlates with susceptibility of monocytes/macrophages to HIV-1 infection. Blood. 2009;113(3):671-4. Epub 2008/11/19. doi: 10.1182/blood-2008-09-175000. PubMed PMID: 19015395; PMCID: PMC2628373.

54. Chiang K, Sung TL, Rice AP. Regulation of cyclin T1 and HIV-1 Replication by microRNAs in resting CD4+ T lymphocytes. Journal of virology. 2012;86(6):3244-52. Epub 2011/12/30. doi: 10.1128/JVI.05065-11. PubMed PMID: 22205749; PMCID: PMC3302325.

55. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM. A microRNA polycistron as a potential human oncogene. Nature. 2005;435(7043):828-33. Epub 2005/06/10. doi: 10.1038/nature03552. PubMed PMID: 15944707; PMCID: PMC4599349.

56. Steiner DF, Thomas MF, Hu JK, Yang Z, Babiarz JE, Allen CD, Matloubian M, Blelloch R, Ansel KM. MicroRNA-29 regulates T-box transcription factors and interferon-gamma production in helper T cells. Immunity. 2011;35(2):169-81. Epub 2011/08/09. doi: 10.1016/j.immuni.2011.07.009. PubMed PMID: 21820330; PMCID: PMC3361370.

57. Serr I, Furst RW, Ott VB, Scherm MG, Nikolaev A, Gokmen F, Kalin S, Zillmer S, Bunk M, Weigmann B, Kunschke N, Loretz B, Lehr CM, Kirchner B, Haase B, Pfaffl M, Waisman A, Willis RA, Ziegler AG, Daniel C. miRNA92a targets KLF2 and the phosphatase PTEN signaling to promote human T follicular helper precursors in T1D islet autoimmunity. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(43):E6659-e68. Epub 2016/10/30. doi: 10.1073/pnas.1606646113. PubMed PMID: 27791035; PMCID: PMC5087025.

58. Casulli S, Elbim C. Interactions between human immunodeficiency virus type 1 and polymorphonuclear neutrophils. Journal of innate immunity. 2014;6(1):13-20. Epub 2013/07/23. doi: 10.1159/000353588. PubMed PMID: 23867213; PMCID: PMC6741617.

59. Yaseen MM, Abuharfeil NM, Yaseen MM, Shabsoug BM. The role of polymorphonuclear neutrophils during HIV-1 infection. Archives of virology. 2018;163(1):1-21. Epub 2017/10/06. doi: 10.1007/s00705-017-3569-9. PubMed PMID: 28980078.

60. D’Agostino C, Lichtner M, Mastroianni CM, Ceccarelli G, Iannetta M, Antonucci S, Vullo V, Massetti AP. In vivo release of alpha-defensins in plasma, neutrophils and CD8 T-lymphocytes of patients with HIV infection. Current HIV research. 2009;7(6):650-5. Epub 2009/11/26. doi: 10.2174/157016209789973600. PubMed PMID: 19929802.

61. Rajasuriar R, Khoury G, Kamarulzaman A, French MA, Cameron PU, Lewin SR. Persistent immune activation in chronic HIV infection: do any interventions work? AIDS. 2013;27(8):1199-208. Epub 2013/01/18. doi: 10.1097/QAD.0b013e32835ecb8b. PubMed PMID: 23324661; PMCID: PMC4285780.

62. Hunt PW, Brenchley J, Sinclair E, McCune JM, Roland M, Page-Shafer K, Hsue P, Emu B, Krone M, Lampiris H, Douek D, Martin JN, Deeks SG. Relationship between T cell activation and CD4+ T cell count in HIV-seropositive individuals with undetectable plasma HIV RNA levels in the absence of therapy. The Journal of infectious diseases. 2008;197(1):126-33. Epub 2008/01/04. doi: 10.1086/524143. PubMed PMID:18171295; PMCID: PMC3466592.

63. Gomez I, Ward B, Souilhol C, Recarti C, Ariaans M, Johnston J, Burnett A, Mahmoud M, Luong LA, West L, Long M, Parry S, Woods R, Hulston C, Benedikter B, Niespolo C, Bazaz R, Francis S, Kiss-Toth E, van Zandvoort M, Schober A, Hellewell P, Evans PC, Ridger V. Neutrophil microvesicles drive atherosclerosis by delivering miR-155 to atheroprone endothelium. Nature communications. 2020;11(1):214. Epub 2020/01/12. doi: 10.1038/s41467-019-14043-y. PubMed PMID: 31924781; PMCID: PMC6954269.

64. Butin-Israeli V, Bui TM, Wiesolek HL, Mascarenhas L, Lee JJ, Mehl LC, Knutson KR, Adam SA, Goldman RD, Beyder A, Wiesmuller L, Hanauer SB, Sumagin R. Neutrophil-induced genomic instability impedes resolution of inflammation and wound healing. The Journal of clinical investigation. 2019;129(2):712-26. Epub 2019/01/15. doi: 10.1172/JCI122085. PubMed PMID: 30640176; PMCID: PMC6355304.

65. Jung N, Schenten V, Bueb JL, Tolle F, Brechard S. miRNAs Regulate Cytokine Secretion Induced by Phosphorylated S100A8/A9 in Neutrophils. International journal of molecular sciences. 2019;20(22). Epub 2019/11/20. doi: 10.3390/ijms20225699. PubMed PMID: 31739406; PMCID: PMC6887701.

66. Kolonics F, Kajdacsi E, Farkas VJ, Veres DS, Khamari D, Kittel A, Merchant ML, McLeish KR, Lorincz AM, Ligeti E. Neutrophils produce proinflammatory or anti-inflammatory extracellular vesicles depending on the environmental conditions. Journal of leukocyte biology. 2020. Epub 2020/09/19. doi: 10.1002/JLB.3A0320-210R. PubMed PMID: 32946637.

67. Hong CW. Extracellular Vesicles of Neutrophils. Immune network. 2018;18(6):e43. Epub 2019/01/09. doi: 10.4110/in.2018.18.e43. PubMed PMID: 30619629; PMCID: PMC6312893.

68. Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of extracellular vesicles. 2018;7(1):1535750. Epub 2019/01/15. doi: 10.1080/20013078.2018.1535750. PubMed PMID: 30637094; PMCID: PMC6322352.

69. Valencia K, Luis-Ravelo D, Bovy N, Anton I, Martinez-Canarias S, Zandueta C, Ormazabal C, Struman I, Tabruyn S, Rebmann V, De Las Rivas J, Guruceaga E, Bandres E, Lecanda F. miRNA cargo within exosome-like vesicle transfer influences metastatic bone colonization. Molecular oncology. 2014;8(3):689-703. Epub 2014/03/07. doi: 10.1016/j.molonc.2014.01.012. PubMed PMID: 24593875; PMCID: PMC5528646.

70. Gilbert C, Levasseur S, Desaulniers P, Dusseault AA, Thibault N, Bourgoin SG, Naccache PH. Chemotactic factor-induced recruitment and activation of Tec family kinases in human neutrophils. II. Effects of LFM-A13, a specific Btk inhibitor. Journal of Immunology. 2003;170(10):5235-43. Epub 2003/05/08. doi: 10.4049/jimmunol.170.10.5235. PubMed PMID: 12734372.

71. Ryckman C, Robichaud GA, Roy J, Cantin R, Tremblay MJ, Tessier PA. HIV-1 transcription and virus production are both accentuated by the proinflammatory myeloid-related proteins in human CD4+ T lymphocytes. Journal of Immunology. 2002;169(6):3307-13. Epub 2002/09/10. doi: 10.4049/jimmunol.169.6.3307. PubMed PMID: 12218151.

72. Hiroi T, Shibayama M. Measurement of Particle Size Distribution in Turbid Solutions by Dynamic Light Scattering Microscopy. Journal of Visualized Experiments. 2017(119):e54885. Epub 2017/01/25. doi: 10.3791/54885. PubMed PMID: 28117767; PMCID: PMC5409188.

73. Rousseau M, Belleannee C, Duchez AC, Cloutier N, Levesque T, Jacques F, Perron J, Nigrovic PA, Dieude M, Hebert MJ, Gelb MH, Boilard E. Detection and quantification of microparticles from different cellular lineages using flow cytometry. Evaluation of the impact of secreted phospholipase A2 on microparticle assessment. PLoS One. 2015;10(1):e0116812. Epub 2015/01/15. doi: 10.1371/journal.pone.0116812. PubMed PMID: 25587983; PMCID: PMC4294685.

74. Cantin R, Diou J, Belanger D, Tremblay AM, Gilbert C. Discrimination between exosomes and HIV-1: purification of both vesicles from cell-free supernatants. Journal of immunological methods. 2008;338(1-2):21-30. Epub 2008/08/05. doi: 10.1016/j.jim.2008.07.007. PubMed PMID: 18675270.

75. Altfeld M, Gale M, Jr. Innate immunity against HIV-1 infection. Nature immunology. 2015;16(6):554-62. Epub 2015/05/20. doi: 10.1038/ni.3157. PubMed PMID: 25988887.

76. McMichael AJ, Borrow P, Tomaras GD, Goonetilleke N, Haynes BF. The immune response during acute HIV-1 infection: clues for vaccine development. Nature Reviews Immunology. 2010;10(1):11-23. Epub 2009/12/17. doi: 10.1038/nri2674. PubMed PMID: 20010788; PMCID: PMC3119211.

77. Vickers KC, Remaley AT. Lipid-based carriers of microRNAs and intercellular communication. Current opinion in lipidology. 2012;23(2):91-7. Epub 2012/03/16. doi: 10.1097/MOL.0b013e328350a425. PubMed PMID: 22418571; PMCID: PMC5570485.

78. Sun B, Dalvi P, Abadjian L, Tang N, Pulliam L. Blood neuron-derived exosomes as biomarkers of cognitive impairment in HIV. AIDS (London, England). 2017;31(14):F9-F17. Epub 2017/07/12. doi: 10.1097/QAD.0000000000001595. PubMed PMID: 28692534; PMCID: PMC5578870.

79. Chettimada S, Lorenz DR, Misra V, Dillon ST, Reeves RK, Manickam C, Morgello S, Kirk GD, Mehta SH, Gabuzda D. Exosome markers associated with immune activation and oxidative stress in HIV patients on antiretroviral therapy. Scientific reports. 2018;8(1):7227. Epub 2018/05/10. doi: 10.1038/s41598-018-25515-4. PubMed PMID: 29740045; PMCID: PMC5940833.

80. Gardiner C, Di Vizio D, Sahoo S, Thery C, Witwer KW, Wauben M, Hill AF. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. Journal of extracellular vesicles. 2016;5(1):32945. Epub 2016/11/03. doi: 10.3402/jev.v5.32945. PubMed PMID: 27802845; PMCID: PMC5090131.

81. Lenassi M, Cagney G, Liao M, Vaupotic T, Bartholomeeusen K, Cheng Y, Krogan NJ, Plemenitas A, Peterlin BM. HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic. 2010;11(1):110-22. Epub 2009/11/17. doi: 10.1111/j.1600-0854.2009.01006.x. PubMed PMID: 19912576; PMCID: PMC2796297.

82. Benaroch P, Billard E, Gaudin R, Schindler M, Jouve M. HIV-1 assembly in macrophages. Retrovirology. 2010;7(1):29. Epub 2010/04/09. doi: 10.1186/1742-4690-7-29. PubMed PMID: 20374631; PMCID: PMC2861634.

83. Perez PS, Romaniuk MA, Duette GA, Zhao Z, Huang Y, Martin-Jaular L, Witwer KW, Thery C, Ostrowski M. Extracellular vesicles and chronic inflammation during HIV infection. Journal of extracellular vesicles. 2019;8(1):1687275. Epub 2020/01/31. doi: 10.1080/20013078.2019.1687275. PubMed PMID: 31998449; PMCID: PMC6963413.

84. Lee JH, Schierer S, Blume K, Dindorf J, Wittki S, Xiang W, Ostalecki C, Koliha N, Wild S, Schuler G, Fackler OT, Saksela K, Harrer T, Baur AS. HIV-Nef and ADAM17-Containing Plasma Extracellular Vesicles Induce and Correlate with Immune Pathogenesis in Chronic HIV Infection. EBioMedicine. 2016;6:103-13. Epub 2016/05/24. doi: 10.1016/j.ebiom.2016.03.004. PubMed PMID: 27211553; PMCID: PMC4856776.

85. Erlandson KM, Allshouse AA, Jankowski CM, Lee EJ, Rufner KM, Palmer BE, Wilson CC, MaWhinney S, Kohrt WM, Campbell TB. Association of functional impairment with inflammation and immune activation in HIV type 1-infected adults receiving effective antiretroviral therapy. The Journal of infectious diseases. 2013;208(2):249-59. Epub 2013/04/06. doi: 10.1093/infdis/jit147. PubMed PMID: 23559466; PMCID: PMC3685225.

86. Appay V, Sauce D. Immune activation and inflammation in HIV-1 infection: causes and consequences. The Journal of Pathology. 2008;214(2):231-41. Epub 2007/12/29. doi: 10.1002/path.2276. PubMed PMID: 18161758.

87. Deeks SG. HIV infection, inflammation, immunosenescence, and aging. Annual review of medicine. 2011;62:141-55. Epub 2010/11/26. doi: 10.1146/annurev-med-042909-093756. PubMed PMID: 21090961; PMCID: PMC3759035.

88. Chevillet JR, Kang Q, Ruf IK, Briggs HA, Vojtech LN, Hughes SM, Cheng HH, Arroyo JD, Meredith EK, Gallichotte EN, Pogosova-Agadjanyan EL, Morrissey C, Stirewalt DL, Hladik F, Yu EY, Higano CS, Tewari M. Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(41):14888-93. Epub 2014/10/01. doi: 10.1073/pnas.1408301111. PubMed PMID: 25267620; PMCID: PMC4205618.

89. Shurtleff MJ, Temoche-Diaz MM, Karfilis KV, Ri S, Schekman R. Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. Elife. 2016;5:e19276. Epub 2016/08/26. doi: 10.7554/eLife.19276. PubMed PMID: 27559612; PMCID: PMC5047747.

90. Brown BD, Gentner B, Cantore A, Colleoni S, Amendola M, Zingale A, Baccarini A, Lazzari G, Galli C, Naldini L. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nature biotechnology. 2007;25(12):1457-67. Epub 2007/11/21. doi: 10.1038/nbt1372. PubMed PMID: 18026085.

91. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature cell biology. 2007;9(6):654-9. Epub 2007/05/09. doi: 10.1038/ncb1596. PubMed PMID: 17486113.

92. Alenquer M, Amorim MJ. Exosome Biogenesis, Regulation, and Function in Viral Infection. Viruses. 2015;7(9):5066-83. Epub 2015/09/24. doi: 10.3390/v7092862. PubMed PMID: 26393640; PMCID: PMC4584306.

93. Biswas S, Haleyurgirisetty M, Lee S, Hewlett I, Devadas K. Development and validation of plasma miRNA biomarker signature panel for the detection of early HIV-1 infection. EBioMedicine. 2019;43:307-16. Epub 2019/04/22. doi: 10.1016/j.ebiom.2019.04.023. PubMed PMID: 31005516; PMCID: PMC6557912.

94. Ballegaard V, Ralfkiaer U, Pedersen KK, Hove M, Koplev S, Braendstrup P, Ryder LP, Madsen HO, Gerstoft J, Gronbaek K, Nielsen SD. MicroRNA-210, MicroRNA-331, and MicroRNA-7 Are Differentially Regulated in Treated HIV-1-Infected Individuals and Are Associated With Markers of Systemic Inflammation. Journal of Acquired Immune Deficiency Syndromes. 2017;74(4):e104-e13. Epub 2016/10/18. doi: 10.1097/QAI.0000000000001191. PubMed PMID: 27749601.