Novel Strategies to Combat CMV-Related Cardiovascular Disease

Main Article Content

Elena Vasilieva
Sara Gianella
Michael L. Freeman


Cytomegalovirus (CMV), a ubiquitous human pathogen that is never cleared from the host, has long been thought to be relatively innocuous in immunocompetent adults, but causes severe complications including blindness, end-organ disease, and death in newborns and in immunocompromised individuals, such as organ transplant recipients and those suffering from AIDS. Yet even in persons with intact immunity, CMV infection is associated with profound stimulation of immune and inflammatory pathways. Carriers of CMV infection also have an elevated risk of developing cardiovascular complications. In this review, we define the proposed mechanisms of how CMV contributes to cardiovascular disease (CVD), describe current approaches to target CMV, and discuss how these strategies may or may not alleviate cardiovascular complications in those with CMV infection. In addition, we discuss the special situation of CMV coinfection in people with HIV infection receiving antiretroviral therapy, and describe how these 2 viral infections may interact to potentiate CVD in this especially vulnerable population.


Download data is not yet available.

Article Details



1. Staras SA, Dollard SC, Radford KW, Flanders WD, Pass RF, Cannon MJ. Seroprevalence of cytomegalovirus infection in the United States, 1988-1994. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2006;43(9):1143-51. Epub 2006/10/10. doi: 10.1086/508173. PubMed PMID: 17029132.

2. Bate SL, Dollard SC, Cannon MJ. Cytomegalovirus seroprevalence in the United States: the national health and nutrition examination surveys, 1988-2004. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2010;50(11):1439-47. Epub 2010/04/30. doi: 10.1086/652438. PubMed PMID: 20426575.

3. Griffiths PD, Baboonian C. A prospective study of primary cytomegalovirus infection during pregnancy: final report. Br J Obstet Gynaecol. 1984;91(4):307-15. Epub 1984/04/01. doi: 10.1111/j.1471-0528.1984.tb05915.x. PubMed PMID: 6324849.

4. Tookey PA, Ades AE, Peckham CS. Cytomegalovirus prevalence in pregnant women: the influence of parity. Arch Dis Child. 1992;67(7 Spec No):779-83. Epub 1992/07/01. doi: 10.1136/adc.67.7_spec_no.779. PubMed PMID: 1325757; PMCID: PMC1590405.

5. Bates M, Brantsaeter AB. Human cytomegalovirus (CMV) in Africa: a neglected but important pathogen. J Virus Erad. 2016;2(3):136-42. Epub 2016/08/03. PubMed PMID: 27482452; PMCID: PMC4967964.

6. Al Mana H, Yassine HM, Younes NN, Al-Mohannadi A, Al-Sadeq DW, Alhababi D, Nasser EA, Nasrallah GK. The Current Status of Cytomegalovirus (CMV) Prevalence in the MENA Region: A Systematic Review. Pathogens. 2019;8(4). Epub 2019/11/07. doi: 10.3390/pathogens8040213. PubMed PMID: 31683687; PMCID: PMC6963600.

7. Griffiths P, Baraniak I, Reeves M. The pathogenesis of human cytomegalovirus. J Pathol. 2015;235(2):288-97. Epub 2014/09/11. doi: 10.1002/path.4437. PubMed PMID: 25205255.

8. Spector SA, Hirata KK, Newman TR. Identification of multiple cytomegalovirus strains in homosexual men with acquired immunodeficiency syndrome. J Infect Dis. 1984;150(6):953-6. Epub 1984/12/01. doi: 10.1093/infdis/150.6.953. PubMed PMID: 6094679.

9. Meyer-Konig U, Ebert K, Schrage B, Pollak S, Hufert FT. Simultaneous infection of healthy people with multiple human cytomegalovirus strains. Lancet. 1998;352(9136):1280-1. Epub 1998/10/27. doi: 10.1016/S0140-6736(05)70487-6. PubMed PMID: 9788461.

10. Boppana SB, Rivera LB, Fowler KB, Mach M, Britt WJ. Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity. N Engl J Med. 2001;344(18):1366-71. Epub 2001/05/03. doi: 10.1056/NEJM200105033441804. PubMed PMID: 11333993.

11. Gorman S, Harvey NL, Moro D, Lloyd ML, Voigt V, Smith LM, Lawson MA, Shellam GR. Mixed infection with multiple strains of murine cytomegalovirus occurs following simultaneous or sequential infection of immunocompetent mice. J Gen Virol. 2006;87(Pt 5):1123-32. Epub 2006/04/11. doi: 10.1099/vir.0.81583-0. PubMed PMID: 16603512.

12. Gianella S, Massanella M, Wertheim JO, Smith DM. The Sordid Affair Between Human Herpesvirus and HIV. J Infect Dis. 2015;212(6):845-52. Epub 2015/03/10. doi: 10.1093/infdis/jiv148. PubMed PMID: 25748324; PMCID: PMC4548466.

13. Freeman ML, Lederman MM, Gianella S. Partners in Crime: The Role of CMV in Immune Dysregulation and Clinical Outcome During HIV Infection. Current HIV/AIDS reports. 2016;13(1):10-9. Epub 2016/01/27. doi: 10.1007/s11904-016-0297-9. PubMed PMID: 26810437; PMCID: PMC5079703.

14. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, Sleath PR, Grabstein KH, Hosken NA, Kern F, Nelson JA, Picker LJ. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. The Journal of experimental medicine. 2005;202(5):673-85. Epub 2005/09/09. doi: 10.1084/jem.20050882. PubMed PMID: 16147978; PMCID: PMC2212883.

15. Kenneson A, Cannon MJ. Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev Med Virol. 2007;17(4):253-76. Epub 2007/06/21. doi: 10.1002/rmv.535. PubMed PMID: 17579921.

16. Lanzieri TM, Dollard SC, Bialek SR, Grosse SD. Systematic review of the birth prevalence of congenital cytomegalovirus infection in developing countries. Int J Infect Dis. 2014;22:44-8. Epub 2014/03/19. doi: 10.1016/j.ijid.2013.12.010. PubMed PMID: 24631522; PMCID: PMC4829484.

17. Fowler KB, McCollister FP, Dahle AJ, Boppana S, Britt WJ, Pass RF. Progressive and fluctuating sensorineural hearing loss in children with asymptomatic congenital cytomegalovirus infection. J Pediatr. 1997;130(4):624-30. Epub 1997/04/01. doi: 10.1016/s0022-3476(97)70248-8. PubMed PMID: 9108862.

18. Yamamoto AY, Mussi-Pinhata MM, Isaac Mde L, Amaral FR, Carvalheiro CG, Aragon DC, Manfredi AK, Boppana SB, Britt WJ. Congenital cytomegalovirus infection as a cause of sensorineural hearing loss in a highly immune population. Pediatr Infect Dis J. 2011;30(12):1043-6. Epub 2011/08/05. doi: 10.1097/INF.0b013e31822d9640. PubMed PMID: 21814153; PMCID: PMC3222783.

19. Manicklal S, Emery VC, Lazzarotto T, Boppana SB, Gupta RK. The “silent” global burden of congenital cytomegalovirus. Clin Microbiol Rev. 2013;26(1):86-102. Epub 2013/01/09. doi: 10.1128/CMR.00062-12. PubMed PMID: 23297260; PMCID: PMC3553672.

20. Wang H, Peng G, Bai J, He B, Huang K, Hu X, Liu D. Cytomegalovirus Infection and Relative Risk of Cardiovascular Disease (Ischemic Heart Disease, Stroke, and Cardiovascular Death): A Meta-Analysis of Prospective Studies Up to 2016. J Am Heart Assoc. 2017;6(7). Epub 2017/07/08. doi: 10.1161/JAHA.116.005025. PubMed PMID: 28684641; PMCID: PMC5586265.

21. Lebedeva AM, Shpektor AV, Vasilieva EY, Margolis LB. Cytomegalovirus Infection in Cardiovascular Diseases. Biochemistry (Mosc). 2018;83(12):1437-47. Epub 2019/03/18. doi: 10.1134/S0006297918120027. PubMed PMID: 30878019.

22. Du Y, Zhang G, Liu Z. Human cytomegalovirus infection and coronary heart disease: a systematic review. Virol J. 2018;15(1):31. Epub 2018/02/08. doi: 10.1186/s12985-018-0937-3. PubMed PMID: 29409508; PMCID: PMC5801777.

23. Lichtner M, Cicconi P, Vita S, Cozzi-Lepri A, Galli M, Lo Caputo S, Saracino A, De Luca A, Moioli M, Maggiolo F, Marchetti G, Vullo V, d’Arminio Monforte A, Study IF. Cytomegalovirus coinfection is associated with an increased risk of severe non-AIDS-defining events in a large cohort of HIV-infected patients. J Infect Dis. 2015;211(2):178-86. Epub 2014/08/02. doi: 10.1093/infdis/jiu417. PubMed PMID: 25081936.

24. Kuller LH, Tracy R, Belloso W, De Wit S, Drummond F, Lane HC, Ledergerber B, Lundgren J, Neuhaus J, Nixon D, Paton NI, Neaton JD, Group ISS. Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. PLoS medicine. 2008;5(10):e203. Epub 2008/10/24. doi: 10.1371/journal.pmed.0050203. PubMed PMID: 18942885; PMCID: PMC2570418.

25. Tenorio AR, Zheng Y, Bosch RJ, Krishnan S, Rodriguez B, Hunt PW, Plants J, Seth A, Wilson CC, Deeks SG, Lederman MM, Landay AL. Soluble markers of inflammation and coagulation but not T-cell activation predict non-AIDS-defining morbid events during suppressive antiretroviral treatment. J Infect Dis. 2014;210(8):1248-59. Epub 2014/05/06. doi: 10.1093/infdis/jiu254. PubMed PMID: 24795473; PMCID: PMC4192039.

26. Hunt PW, Sinclair E, Rodriguez B, Shive C, Clagett B, Funderburg N, Robinson J, Huang Y, Epling L, Martin JN, Deeks SG, Meinert CL, Van Natta ML, Jabs DA, Lederman MM. Gut epithelial barrier dysfunction and innate immune activation predict mortality in treated HIV infection. J Infect Dis. 2014;210(8):1228-38. Epub 2014/04/24. doi: 10.1093/infdis/jiu238. PubMed PMID: 24755434; PMCID: PMC4192038.

27. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein JJP, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, Rossi PRF, Troquay RPT, Libby P, Glynn RJ, Group CT. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med. 2017;377(12):1119-31. Epub 2017/08/29. doi: 10.1056/NEJMoa1707914. PubMed PMID: 28845751.

28. Ridker PM, MacFadyen JG, Everett BM, Libby P, Thuren T, Glynn RJ, Group CT. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet. 2018;391(10118):319-28. Epub 2017/11/18. doi: 10.1016/S0140-6736(17)32814-3. PubMed PMID: 29146124.

29. Woodroffe SB, Garnett HM, Danis VA. Interleukin-1 production and cell-activation response to cytomegalovirus infection of vascular endothelial cells. Arch Virol. 1993;133(3-4):295-308. Epub 1993/01/01. doi: 10.1007/BF01313770. PubMed PMID: 8257291.

30. Dengler TJ, Raftery MJ, Werle M, Zimmermann R, Schonrich G. Cytomegalovirus infection of vascular cells induces expression of pro-inflammatory adhesion molecules by paracrine action of secreted interleukin-1beta. Transplantation. 2000;69(6):1160-8. Epub 2000/04/13. doi: 10.1097/00007890-200003270-00022. PubMed PMID: 10762222.

31. Cook CH, Trgovcich J, Zimmerman PD, Zhang Y, Sedmak DD. Lipopolysaccharide, tumor necrosis factor alpha, or interleukin-1beta triggers reactivation of latent cytomegalovirus in immunocompetent mice. J Virol. 2006;80(18):9151-8. Epub 2006/08/31. doi: 10.1128/JVI.00216-06. PubMed PMID: 16940526; PMCID: PMC1563908.

32. O’Connor CM, Murphy EA. A myeloid progenitor cell line capable of supporting human cytomegalovirus latency and reactivation, resulting in infectious progeny. J Virol. 2012;86(18):9854-65. Epub 2012/07/05. doi: 10.1128/JVI.01278-12. PubMed PMID: 22761372; PMCID: PMC3446554.

33. Jarvis MA, Borton JA, Keech AM, Wong J, Britt WJ, Magun BE, Nelson JA. Human cytomegalovirus attenuates interleukin-1beta and tumor necrosis factor alpha proinflammatory signaling by inhibition of NF-kappaB activation. J Virol. 2006;80(11):5588-98. Epub 2006/05/16. doi: 10.1128/JVI.00060-06. PubMed PMID: 16699040; PMCID: PMC1472148.

34. Listman JA, Race JE, Walker-Kopp N, Unlu S, Auron PE. Inhibition of IL-1beta transcription by peptides derived from the hCMV IE2 transactivator. Mol Immunol. 2008;45(9):2667-77. Epub 2008/03/01. doi: 10.1016/j.molimm.2007.12.024. PubMed PMID: 18308397; PMCID: PMC2363159.

35. Botto S, Abraham J, Mizuno N, Pryke K, Gall B, Landais I, Streblow DN, Fruh KJ, DeFilippis VR. Human Cytomegalovirus Immediate Early 86-kDa Protein Blocks Transcription and Induces Degradation of the Immature Interleukin-1beta Protein during Virion-Mediated Activation of the AIM2 Inflammasome. mBio. 2019;10(1). Epub 2019/02/14. doi: 10.1128/mBio.02510-18. PubMed PMID: 30755509; PMCID: PMC6372796.

36. Montag C, Wagner J, Gruska I, Hagemeier C. Human cytomegalovirus blocks tumor necrosis factor alpha- and interleukin-1beta-mediated NF-kappaB signaling. J Virol. 2006;80(23):11686-98. Epub 2006/09/29. doi: 10.1128/JVI.01168-06. PubMed PMID: 17005669; PMCID: PMC1642604.

37. Ridker PM, Rifai N, Stampfer MJ, Hennekens CH. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation. 2000;101(15):1767-72. Epub 2000/04/19. doi: 10.1161/01.cir.101.15.1767. PubMed PMID: 10769275.

38. Danesh J, Kaptoge S, Mann AG, Sarwar N, Wood A, Angleman SB, Wensley F, Higgins JP, Lennon L, Eiriksdottir G, Rumley A, Whincup PH, Lowe GD, Gudnason V. Long-term interleukin-6 levels and subsequent risk of coronary heart disease: two new prospective studies and a systematic review. PLoS medicine. 2008;5(4):e78. Epub 2008/04/11. doi: 10.1371/journal.pmed.0050078. PubMed PMID: 18399716; PMCID: PMC2288623.

39. Ridker PM, Luscher TF. Anti-inflammatory therapies for cardiovascular disease. Eur Heart J. 2014;35(27):1782-91. Epub 2014/05/28. doi: 10.1093/eurheartj/ehu203. PubMed PMID: 24864079; PMCID: PMC4155455.

40. Bacchiega BC, Bacchiega AB, Usnayo MJ, Bedirian R, Singh G, Pinheiro GD. Interleukin 6 Inhibition and Coronary Artery Disease in a High-Risk Population: A Prospective Community-Based Clinical Study. J Am Heart Assoc. 2017;6(3). Epub 2017/03/16. doi: 10.1161/JAHA.116.005038. PubMed PMID: 28288972; PMCID: PMC5524026.

41. Ruiz-Limon P, Ortega R, Arias de la Rosa I, Abalos-Aguilera MDC, Perez-Sanchez C, Jimenez-Gomez Y, Peralbo-Santaella E, Font P, Ruiz-Vilches D, Ferrin G, Collantes-Estevez E, Escudero-Contreras A, Lopez-Pedrera C, Barbarroja N. Tocilizumab improves the proatherothrombotic profile of rheumatoid arthritis patients modulating endothelial dysfunction, NETosis, and inflammation. Transl Res. 2017;183:87-103. Epub 2016/12/29. doi: 10.1016/j.trsl.2016.12.003. PubMed PMID: 28027930.

42. Iwamoto GK, Konicek SA. Cytomegalovirus immediate early genes upregulate interleukin-6 gene expression. Journal of investigative medicine : the official publication of the American Federation for Clinical Research. 1997;45(4):175-82. Epub 1997/04/01. PubMed PMID: 9154298.

43. Humar A, St Louis P, Mazzulli T, McGeer A, Lipton J, Messner H, MacDonald KS. Elevated serum cytokines are associated with cytomegalovirus infection and disease in bone marrow transplant recipients. J Infect Dis. 1999;179(2):484-8. Epub 1999/01/07. doi: 10.1086/314602. PubMed PMID: 9878035.

44. Blankenberg S, Rupprecht HJ, Bickel C, Espinola-Klein C, Rippin G, Hafner G, Ossendorf M, Steinhagen K, Meyer J. Cytomegalovirus infection with interleukin-6 response predicts cardiac mortality in patients with coronary artery disease. Circulation. 2001;103(24):2915-21. Epub 2001/06/20. doi: 10.1161/01.cir.103.24.2915. PubMed PMID: 11413080.

45. Botto S, Streblow DN, DeFilippis V, White L, Kreklywich CN, Smith PP, Caposio P. IL-6 in human cytomegalovirus secretome promotes angiogenesis and survival of endothelial cells through the stimulation of survivin. Blood. 2011;117(1):352-61. Epub 2010/10/12. doi: 10.1182/blood-2010-06-291245. PubMed PMID: 20930069; PMCID: PMC3037756.

46. Tong CY, Bakran A, Williams H, Cuevas LE, Peiris JS, Hart CA. Association of tumour necrosis factor alpha and interleukin 6 levels with cytomegalovirus DNA detection and disease after renal transplantation. J Med Virol. 2001;64(1):29-34. Epub 2001/04/04. doi: 10.1002/jmv.1013. PubMed PMID: 11285565.

47. Limaye AP, Stapleton RD, Peng L, Gunn SR, Kimball LE, Hyzy R, Exline MC, Files DC, Morris PE, Frankel SK, Mikkelsen ME, Hite D, Enfield KB, Steingrub J, O’Brien J, Parsons PE, Cuschieri J, Wunderink RG, Hotchkin DL, Chen YQ, Rubenfeld GD, Boeckh M. Effect of Ganciclovir on IL-6 Levels Among Cytomegalovirus-Seropositive Adults With Critical Illness: A Randomized Clinical Trial. JAMA. 2017;318(8):731-40. Epub 2017/08/23. doi: 10.1001/jama.2017.10569. PubMed PMID: 28829877; PMCID: PMC5817487.

48. Rodriguez B, Chen Z, Tatsuoka C, Sieg SF, Landay A, McComsey GA, Clagett B, Longenecker CT, Shive C, Crawford KW, Moisi D, Freeman ML, Funderburg N, Calabrese L, Lederman MM. IL-6 blockade decreases inflammation and increases CD127 expression in HIV infection. Conference on Retroviruses and Opportunistic Infections; Boston, MA: IAS-USA; 2020.

49. Pasceri V, Willerson JT, Yeh ET. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation. 2000;102(18):2165-8. Epub 2000/11/01. doi: 10.1161/01.cir.102.18.2165. PubMed PMID: 11056086.

50. Zwaka TP, Hombach V, Torzewski J. C-reactive protein-mediated low density lipoprotein uptake by macrophages: implications for atherosclerosis. Circulation. 2001;103(9):1194-7. Epub 2001/03/10. doi: 10.1161/01.cir.103.9.1194. PubMed PMID: 11238260.

51. Bisoendial RJ, Kastelein JJ, Levels JH, Zwaginga JJ, van den Bogaard B, Reitsma PH, Meijers JC, Hartman D, Levi M, Stroes ES. Activation of inflammation and coagulation after infusion of C-reactive protein in humans. Circ Res. 2005;96(7):714-6. Epub 2005/03/19. doi: 10.1161/01.RES.0000163015.67711.AB. PubMed PMID: 15774855.

52. Muhlestein JB, Horne BD, Carlquist JF, Madsen TE, Bair TL, Pearson RR, Anderson JL. Cytomegalovirus seropositivity and C-reactive protein have independent and combined predictive value for mortality in patients with angiographically demonstrated coronary artery disease. Circulation. 2000;102(16):1917-23. Epub 2000/10/18. doi: 10.1161/01.cir.102.16.1917. PubMed PMID: 11034939.

53. Zhu J, Quyyumi AA, Norman JE, Csako G, Epstein SE. Cytomegalovirus in the pathogenesis of atherosclerosis: the role of inflammation as reflected by elevated C-reactive protein levels. J Am Coll Cardiol. 1999;34(6):1738-43. Epub 1999/11/30. doi: 10.1016/s0735-1097(99)00410-6. PubMed PMID: 10577564.

54. Zhu J, Shearer GM, Norman JE, Pinto LA, Marincola FM, Prasad A, Waclawiw MA, Csako G, Quyyumi AA, Epstein SE. Host response to cytomegalovirus infection as a determinant of susceptibility to coronary artery disease: sex-based differences in inflammation and type of immune response. Circulation. 2000;102(20):2491-6. Epub 2000/11/15. doi: 10.1161/01.cir.102.20.2491. PubMed PMID: 11076822.

55. Ferrari R. The role of TNF in cardiovascular disease. Pharmacol Res. 1999;40(2):97-105. Epub 1999/08/06. doi: 10.1006/phrs.1998.0463. PubMed PMID: 10433867.

56. Van Taunay JS, Albelda MT, Frias JC, Lipinski MJ. Biologics and Cardiovascular Disease. J Cardiovasc Pharmacol. 2018;72(2):77-85. Epub 2018/05/09. doi: 10.1097/FJC.0000000000000595. PubMed PMID: 29738370.

57. Williams JW, Huang LH, Randolph GJ. Cytokine Circuits in Cardiovascular Disease. Immunity. 2019;50(4):941-54. Epub 2019/04/18. doi: 10.1016/j.immuni.2019.03.007. PubMed PMID: 30995508; PMCID: PMC6924925.

58. Docke WD, Prosch S, Fietze E, Kimel V, Zuckermann H, Klug C, Syrbe U, Kruger DH, von Baehr R, Volk HD. Cytomegalovirus reactivation and tumour necrosis factor. Lancet. 1994;343(8892):268-9. Epub 1994/01/29. doi: 10.1016/s0140-6736(94)91116-9. PubMed PMID: 7905100.

59. Forte E, Swaminathan S, Schroeder MW, Kim JY, Terhune SS, Hummel M. Tumor Necrosis Factor Alpha Induces Reactivation of Human Cytomegalovirus Independently of Myeloid Cell Differentiation following Posttranscriptional Establishment of Latency. mBio. 2018;9(5). Epub 2018/09/13. doi: 10.1128/mBio.01560-18. PubMed PMID: 30206173; PMCID: PMC6134100.

60. Baillie J, Sahlender DA, Sinclair JH. Human cytomegalovirus infection inhibits tumor necrosis factor alpha (TNF-alpha) signaling by targeting the 55-kilodalton TNF-alpha receptor. J Virol. 2003;77(12):7007-16. Epub 2003/05/28. doi: 10.1128/jvi.77.12.7007-7016.2003. PubMed PMID: 12768019; PMCID: PMC156201.

61. Smith PD, Saini SS, Raffeld M, Manischewitz JF, Wahl SM. Cytomegalovirus induction of tumor necrosis factor-alpha by human monocytes and mucosal macrophages. J Clin Invest. 1992;90(5):1642-8. Epub 1992/11/01. doi: 10.1172/JCI116035. PubMed PMID: 1331170; PMCID: PMC443219.

62. Valle Y, Ledezma-Lozano IY, Torres-Carrillo N, Padilla-Gutierrez JR, Navarro-Hernandez RE, Vazquez-Del Mercado M, Palafox-Sanchez CA, Armendariz-Borunda J, Munoz-Valle JF. Circulating TNFRI and TNFRII levels correlated with the disease activity score (DAS28) in rheumatoid arthritis. Scandinavian journal of rheumatology. 2009;38(5):332-5. Epub 2009/07/07. doi: 10.1080/03009740902865456. PubMed PMID: 19579138.

63. Hoenigl M, Moser CB, Funderburg N, Bosch R, Kantor A, Zhang Y, Eugen-Olsen J, Finkelman M, Reiser J, Landay A, Moisi D, Lederman MM, Gianella S, Adult Clinical Trials Group Nst. Soluble Urokinase Plasminogen Activator Receptor Is Predictive of Non-AIDS Events During Antiretroviral Therapy-mediated Viral Suppression. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2019;69(4):676-86. Epub 2018/11/13. doi: 10.1093/cid/ciy966. PubMed PMID: 30418519; PMCID: PMC6669298.

64. Freeman ML, Mudd JC, Shive CL, Younes SA, Panigrahi S, Sieg SF, Lee SA, Hunt PW, Calabrese LH, Gianella S, Rodriguez B, Lederman MM. CD8 T-Cell Expansion and Inflammation Linked to CMV Coinfection in ART-treated HIV Infection. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2016;62(3):392-6. Epub 2015/09/25. doi: 10.1093/cid/civ840. PubMed PMID: 26400999; PMCID: PMC4706630.

65. Beck-Engeser GB, Maldarelli F, York VA, Deeks SG, Martin JN, SInclair E, Hsue P, Tracy R, Huang Y, Hunt PW. Valganciclovir reduces sTNF-R2 and vascular dysfunction markers in treated HIV. Conference on Retroviruses and Opportunistic Infections; Seattle, WA: IAS-USA; 2019.

66. Guetta E, Guetta V, Shibutani T, Epstein SE. Monocytes harboring cytomegalovirus: interactions with endothelial cells, smooth muscle cells, and oxidized low-density lipoprotein. Possible mechanisms for activating virus delivered by monocytes to sites of vascular injury. Circ Res. 1997;81(1):8-16. Epub 1997/07/01. doi: 10.1161/01.res.81.1.8. PubMed PMID: 9201022.

67. Skarman PJ, Rahbar A, Xie X, Soderberg-Naucler C. Induction of polymorphonuclear leukocyte response by human cytomegalovirus. Microbes Infect. 2006;8(6):1592-601. Epub 2006/05/17. doi: 10.1016/j.micinf.2006.01.017. PubMed PMID: 16702012.

68. Cochain C, Vafadarnejad E, Arampatzi P, Pelisek J, Winkels H, Ley K, Wolf D, Saliba AE, Zernecke A. Single-Cell RNA-Seq Reveals the Transcriptional Landscape and Heterogeneity of Aortic Macrophages in Murine Atherosclerosis. Circ Res. 2018;122(12):1661-74. Epub 2018/03/17. doi: 10.1161/CIRCRESAHA.117.312509. PubMed PMID: 29545365.

69. Winkels H, Ehinger E, Vassallo M, Buscher K, Dinh HQ, Kobiyama K, Hamers AAJ, Cochain C, Vafadarnejad E, Saliba AE, Zernecke A, Pramod AB, Ghosh AK, Anto Michel N, Hoppe N, Hilgendorf I, Zirlik A, Hedrick CC, Ley K, Wolf D. Atlas of the Immune Cell Repertoire in Mouse Atherosclerosis Defined by Single-Cell RNA-Sequencing and Mass Cytometry. Circ Res. 2018;122(12):1675-88. Epub 2018/03/17. doi: 10.1161/CIRCRESAHA.117.312513. PubMed PMID: 29545366; PMCID: PMC5993603.

70. Moore KJ, Koplev S, Fisher EA, Tabas I, Bjorkegren JLM, Doran AC, Kovacic JC. Macrophage Trafficking, Inflammatory Resolution, and Genomics in Atherosclerosis: JACC Macrophage in CVD Series (Part 2). J Am Coll Cardiol. 2018;72(18):2181-97. Epub 2018/10/27. doi: 10.1016/j.jacc.2018.08.2147. PubMed PMID: 30360827; PMCID: PMC6522246.

71. Maciejewski JP, Bruening EE, Donahue RE, Mocarski ES, Young NS, St Jeor SC. Infection of hematopoietic progenitor cells by human cytomegalovirus. Blood. 1992;80(1):170-8. Epub 1992/07/01. PubMed PMID: 1377049.

72. Kondo K, Kaneshima H, Mocarski ES. Human cytomegalovirus latent infection of granulocyte-macrophage progenitors. Proc Natl Acad Sci U S A. 1994;91(25):11879-83. Epub 1994/12/06. doi: 10.1073/pnas.91.25.11879. PubMed PMID: 7991550; PMCID: PMC45339.

73. Minton EJ, Tysoe C, Sinclair JH, Sissons JG. Human cytomegalovirus infection of the monocyte/macrophage lineage in bone marrow. J Virol. 1994;68(6):4017-21. Epub 1994/06/01. doi: 10.1128/JVI.68.6.4017-4021.1994. PubMed PMID: 8189535; PMCID: PMC236908.

74. Carlquist JF, Muhlestein JB, Horne BD, Hart NI, Lim T, Habashi J, Anderson JG, Anderson JL. Cytomegalovirus stimulated mRNA accumulation and cell surface expression of the oxidized LDL scavenger receptor, CD36. Atherosclerosis. 2004;177(1):53-9. Epub 2004/10/19. doi: 10.1016/j.atherosclerosis.2004.07.010. PubMed PMID: 15488865.

75. Vliegen I, Duijvestijn A, Stassen F, Bruggeman C. Murine cytomegalovirus infection directs macrophage differentiation into a pro-inflammatory immune phenotype: implications for atherogenesis. Microbes Infect. 2004;6(12):1056-62. Epub 2004/09/24. doi: 10.1016/j.micinf.2004.05.020. PubMed PMID: 15380774.

76. Streblow DN, Orloff SL, Nelson JA. The HCMV chemokine receptor US28 is a potential target in vascular disease. Curr Drug Targets Infect Disord. 2001;1(2):151-8. Epub 2002/11/29. doi: 10.2174/1568005014606080. PubMed PMID: 12455411.

77. Vomaske J, Nelson JA, Streblow DN. Human Cytomegalovirus US28: a functionally selective chemokine binding receptor. Infect Disord Drug Targets. 2009;9(5):548-56. Epub 2009/07/15. doi: 10.2174/187152609789105696. PubMed PMID: 19594424; PMCID: PMC3496389.

78. Liu H, Jiang D. Fractalkine/CX3CR1 and atherosclerosis. Clinica chimica acta; international journal of clinical chemistry. 2011;412(13-14):1180-6. Epub 2011/04/16. doi: 10.1016/j.cca.2011.03.036. PubMed PMID: 21492740.

79. Shin MS, You S, Kang Y, Lee N, Yoo SA, Park K, Kang KS, Kim SH, Mohanty S, Shaw AC, Montgomery RR, Hwang D, Kang I. DNA Methylation Regulates the Differential Expression of CX3CR1 on Human IL-7Ralphalow and IL-7Ralphahigh Effector Memory CD8+ T Cells with Distinct Migratory Capacities to the Fractalkine. Journal of immunology. 2015;195(6):2861-9. Epub 2015/08/16. doi: 10.4049/jimmunol.1500877. PubMed PMID: 26276874; PMCID: PMC4561204.

80. Vomaske J, Melnychuk RM, Smith PP, Powell J, Hall L, DeFilippis V, Fruh K, Smit M, Schlaepfer DD, Nelson JA, Streblow DN. Differential ligand binding to a human cytomegalovirus chemokine receptor determines cell type-specific motility. PLoS Pathog. 2009;5(2):e1000304. Epub 2009/02/21. doi: 10.1371/journal.ppat.1000304. PubMed PMID: 19229316; PMCID: PMC2637432.

81. Krishna BA, Humby MS, Miller WE, O’Connor CM. Human cytomegalovirus G protein-coupled receptor US28 promotes latency by attenuating c-fos. Proc Natl Acad Sci U S A. 2019;116(5):1755-64. Epub 2019/01/17. doi: 10.1073/pnas.1816933116. PubMed PMID: 30647114; PMCID: PMC6358704.

82. Popescu I, Pipeling MR, Shah PD, Orens JB, McDyer JF. T-bet:Eomes balance, effector function, and proliferation of cytomegalovirus-specific CD8+ T cells during primary infection differentiates the capacity for durable immune control. Journal of immunology. 2014;193(11):5709-22. Epub 2014/10/24. doi: 10.4049/jimmunol.1401436. PubMed PMID: 25339676; PMCID: PMC4239205.

83. Hoji A, Popescu ID, Pipeling MR, Shah PD, Winters SA, McDyer JF. Early KLRG1(+) but Not CD57(+)CD8(+) T Cells in Primary Cytomegalovirus Infection Predict Effector Function and Viral Control. Journal of immunology. 2019;203(8):2063-75. Epub 2019/09/27. doi: 10.4049/jimmunol.1900399. PubMed PMID: 31554693; PMCID: PMC7081945.

84. Khan N, Shariff N, Cobbold M, Bruton R, Ainsworth JA, Sinclair AJ, Nayak L, Moss PA. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. Journal of immunology. 2002;169(4):1984-92. Epub 2002/08/08. doi: 10.4049/jimmunol.169.4.1984. PubMed PMID: 12165524.

85. Stone SF, Price P, Khan N, Moss PA, French MA. HIV patients on antiretroviral therapy have high frequencies of CD8 T cells specific for Immediate Early protein-1 of cytomegalovirus. Aids. 2005;19(6):555-62. Epub 2005/04/02. doi: 10.1097/01.aids.0000163931.68907.7e. PubMed PMID: 15802973.

86. Naeger DM, Martin JN, Sinclair E, Hunt PW, Bangsberg DR, Hecht F, Hsue P, McCune JM, Deeks SG. Cytomegalovirus-specific T cells persist at very high levels during long-term antiretroviral treatment of HIV disease. PLoS One. 2010;5(1):e8886. Epub 2010/02/04. doi: 10.1371/journal.pone.0008886. PubMed PMID: 20126452; PMCID: PMC2813282.

87. Ikejima H, Imanishi T, Tsujioka H, Kashiwagi M, Kuroi A, Tanimoto T, Kitabata H, Ishibashi K, Komukai K, Takeshita T, Akasaka T. Upregulation of fractalkine and its receptor, CX3CR1, is associated with coronary plaque rupture in patients with unstable angina pectoris. Circ J. 2010;74(2):337-45. Epub 2009/12/19. doi: 10.1253/circj.cj-09-0484. PubMed PMID: 20019415.

88. Kasama T, Wakabayashi K, Sato M, Takahashi R, Isozaki T. Relevance of the CX3CL1/fractalkine-CX3CR1 pathway in vasculitis and vasculopathy. Transl Res. 2010;155(1):20-6. Epub 2009/12/17. doi: 10.1016/j.trsl.2009.08.009. PubMed PMID: 20004358.

89. Boag SE, Das R, Shmeleva EV, Bagnall A, Egred M, Howard N, Bennaceur K, Zaman A, Keavney B, Spyridopoulos I. T lymphocytes and fractalkine contribute to myocardial ischemia/reperfusion injury in patients. J Clin Invest. 2015;125(8):3063-76. Epub 2015/07/15. doi: 10.1172/JCI80055. PubMed PMID: 26168217; PMCID: PMC4563749.

90. Dong L, Nordlohne J, Ge S, Hertel B, Melk A, Rong S, Haller H, von Vietinghoff S. T Cell CX3CR1 Mediates Excess Atherosclerotic Inflammation in Renal Impairment. J Am Soc Nephrol. 2016;27(6):1753-64. Epub 2015/10/10. doi: 10.1681/ASN.2015050540. PubMed PMID: 26449606; PMCID: PMC4884117.

91. Morris SR, Chen B, Mudd JC, Panigrahi S, Shive CL, Sieg SF, Cameron CM, Zidar DA, Funderburg NT, Younes SA, Rodriguez B, Gianella S, Lederman MM, Freeman ML. Inflammescent CX3CR1+CD57+CD8+ T cells are generated and expanded by IL-15. JCI Insight. 2020;5(11). Epub 2020/05/06. doi: 10.1172/jci.insight.132963. PubMed PMID: 32369455; PMCID: PMC7346586.

92. Gordon CL, Lee LN, Swadling L, Hutchings C, Zinser M, Highton AJ, Capone S, Folgori A, Barnes E, Klenerman P. Induction and Maintenance of CX3CR1-Intermediate Peripheral Memory CD8(+) T Cells by Persistent Viruses and Vaccines. Cell Rep. 2018;23(3):768-82. Epub 2018/04/19. doi: 10.1016/j.celrep.2018.03.074. PubMed PMID: 29669283; PMCID: PMC5917822.

93. Mudd JC, Panigrahi S, Kyi B, Moon SH, Manion MM, Younes SA, Sieg SF, Funderburg NT, Zidar DA, Lederman MM, Freeman ML. Inflammatory Function of CX3CR1+ CD8+ T Cells in Treated HIV Infection Is Modulated by Platelet Interactions. J Infect Dis. 2016;214(12):1808-16. Epub 2016/10/06. doi: 10.1093/infdis/jiw463. PubMed PMID: 27703039; PMCID: PMC5142088.

94. Bottcher JP, Beyer M, Meissner F, Abdullah Z, Sander J, Hochst B, Eickhoff S, Rieckmann JC, Russo C, Bauer T, Flecken T, Giesen D, Engel D, Jung S, Busch DH, Protzer U, Thimme R, Mann M, Kurts C, Schultze JL, Kastenmuller W, Knolle PA. Functional classification of memory CD8(+) T cells by CX3CR1 expression. Nature communications. 2015;6:8306. Epub 2015/09/26. doi: 10.1038/ncomms9306. PubMed PMID: 26404698; PMCID: PMC4667439.

95. Nishimura M, Umehara H, Nakayama T, Yoneda O, Hieshima K, Kakizaki M, Dohmae N, Yoshie O, Imai T. Dual functions of fractalkine/CX3C ligand 1 in trafficking of perforin+/granzyme B+ cytotoxic effector lymphocytes that are defined by CX3CR1 expression. Journal of immunology. 2002;168(12):6173-80. Epub 2002/06/11. doi: 10.4049/jimmunol.168.12.6173. PubMed PMID: 12055230.

96. Freeman ML, Panigrahi S, Chen B, Juchnowski S, Sieg SF, Lederman MM, Funderburg NT, Zidar DA. CD8+ T-Cell-Derived Tumor Necrosis Factor Can Induce Tissue Factor Expression on Monocytes. J Infect Dis. 2019;220(1):73-7. Epub 2019/01/31. doi: 10.1093/infdis/jiz051. PubMed PMID: 30698729; PMCID: PMC6548895.

97. Schechter ME, Andrade BB, He T, Richter GH, Tosh KW, Policicchio BB, Singh A, Raehtz KD, Sheikh V, Ma D, Brocca-Cofano E, Apetrei C, Tracy R, Ribeiro RM, Sher A, Francischetti IMB, Pandrea I, Sereti I. Inflammatory monocytes expressing tissue factor drive SIV and HIV coagulopathy. Science translational medicine. 2017;9(405). Epub 2017/09/01. doi: 10.1126/scitranslmed.aam5441. PubMed PMID: 28855397; PMCID: PMC5755598.

98. Kobayashi T, Okamoto S, Iwakami Y, Nakazawa A, Hisamatsu T, Chinen H, Kamada N, Imai T, Goto H, Hibi T. Exclusive increase of CX3CR1+CD28-CD4+ T cells in inflammatory bowel disease and their recruitment as intraepithelial lymphocytes. Inflamm Bowel Dis. 2007;13(7):837-46. Epub 2007/02/08. doi: 10.1002/ibd.20113. PubMed PMID: 17285595.

99. Sacre K, Hunt PW, Hsue PY, Maidji E, Martin JN, Deeks SG, Autran B, McCune JM. A role for cytomegalovirus-specific CD4+CX3CR1+ T cells and cytomegalovirus-induced T-cell immunopathology in HIV-associated atherosclerosis. Aids. 2012;26(7):805-14. Epub 2012/02/09. doi: 10.1097/QAD.0b013e328351f780. PubMed PMID: 22313962; PMCID: PMC4155398.

100. Pachnio A, Ciaurriz M, Begum J, Lal N, Zuo J, Beggs A, Moss P. Cytomegalovirus Infection Leads to Development of High Frequencies of Cytotoxic Virus-Specific CD4+ T Cells Targeted to Vascular Endothelium. PLoS Pathog. 2016;12(9):e1005832. Epub 2016/09/09. doi: 10.1371/journal.ppat.1005832. PubMed PMID: 27606804; PMCID: PMC5015996.

101. Chen B, Morris SR, Panigrahi S, Michaelson GM, Wyrick JM, Komissarov AA, Potashnikova D, Lebedeva A, Younes SA, Harth K, Kashyap VS, Vasilieva E, Margolis L, Zidar DA, Sieg SF, Shive CL, Funderburg NT, Gianella S, Lederman MM, Freeman ML. Cytomegalovirus Coinfection Is Associated with Increased Vascular-Homing CD57(+) CD4 T Cells in HIV Infection. Journal of immunology. 2020;204(10):2722-33. Epub 2020/04/02. doi: 10.4049/jimmunol.1900734. PubMed PMID: 32229536; PMCID: PMC7315224.

102. Hsue PY, Hunt PW, Sinclair E, Bredt B, Franklin A, Killian M, Hoh R, Martin JN, McCune JM, Waters DD, Deeks SG. Increased carotid intima-media thickness in HIV patients is associated with increased cytomegalovirus-specific T-cell responses. Aids. 2006;20(18):2275-83. Epub 2006/11/23. doi: 10.1097/QAD.0b013e3280108704. PubMed PMID: 17117013.

103. Bolovan-Fritts CA, Spector SA. Endothelial damage from cytomegalovirus-specific host immune response can be prevented by targeted disruption of fractalkine-CX3CR1 interaction. Blood. 2008;111(1):175-82. Epub 2007/09/27. doi: 10.1182/blood-2007-08-107730. PubMed PMID: 17895402; PMCID: PMC2200803.

104. van de Berg PJ, Yong SL, Remmerswaal EB, van Lier RA, ten Berge IJ. Cytomegalovirus-induced effector T cells cause endothelial cell damage. Clin Vaccine Immunol. 2012;19(5):772-9. Epub 2012/03/09. doi: 10.1128/CVI.00011-12. PubMed PMID: 22398244; PMCID: PMC3346330.

105. Ross R, Harker L. Platelets, endothelium, and smooth muscle cells in atherosclerosis. Adv Exp Med Biol. 1978;102:135-41. Epub 1978/01/01. doi: 10.1007/978-1-4757-1217-9_8. PubMed PMID: 356557.

106. Halcox JP, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA, Nour KR, Quyyumi AA. Prognostic value of coronary vascular endothelial dysfunction. Circulation. 2002;106(6):653-8. Epub 2002/08/07. doi: 10.1161/01.cir.0000025404.78001.d8. PubMed PMID: 12163423.

107. Huang PH, Chen JW, Lu TM, Yu-An Ding P, Lin SJ. Combined use of endothelial function assessed by brachial ultrasound and high-sensitive C-reactive protein in predicting cardiovascular events. Clin Cardiol. 2007;30(3):135-40. Epub 2007/03/28. doi: 10.1002/clc.20058. PubMed PMID: 17385705; PMCID: PMC6652880.

108. Yeboah J, Folsom AR, Burke GL, Johnson C, Polak JF, Post W, Lima JA, Crouse JR, Herrington DM. Predictive value of brachial flow-mediated dilation for incident cardiovascular events in a population-based study: the multi-ethnic study of atherosclerosis. Circulation. 2009;120(6):502-9. Epub 2009/07/29. doi: 10.1161/CIRCULATIONAHA.109.864801. PubMed PMID: 19635967; PMCID: PMC2740975.

109. Wang X, Guo F, Li G, Cao Y, Fu H. Prognostic role of brachial reactivity in patients with ST myocardial infarction after percutaneous coronary intervention. Coron Artery Dis. 2009;20(7):467-72. Epub 2009/07/31. doi: 10.1097/MCA.0b013e32832e5c61. PubMed PMID: 19641459.

110. Xu Y, Arora RC, Hiebert BM, Lerner B, Szwajcer A, McDonald K, Rigatto C, Komenda P, Sood MM, Tangri N. Non-invasive endothelial function testing and the risk of adverse outcomes: a systematic review and meta-analysis. Eur Heart J Cardiovasc Imaging. 2014;15(7):736-46. Epub 2014/01/09. doi: 10.1093/ehjci/jet256. PubMed PMID: 24399339.

111. Vasilieva E, Vorobyeva I, Lebedeva A, Urazovskaya I, Kalinskaya A, Skrypnik D, Shpektor A. Brachial artery flow-mediated dilation in patients with Tako-tsubo cardiomyopathy. Am J Med. 2011;124(12):1176-9. Epub 2011/11/26. doi: 10.1016/j.amjmed.2011.05.033. PubMed PMID: 22114832.

112. Amato M, Frigerio B, Castelnuovo S, Ravani A, Sansaro D, Tremoli E, Squellerio I, Cavalca V, Veglia F, Sirtori CR, Werba JP, Baldassarre D. Effects of smoking regular or light cigarettes on brachial artery flow-mediated dilation. Atherosclerosis. 2013;228(1):153-60. Epub 2013/03/27. doi: 10.1016/j.atherosclerosis.2013.02.037. PubMed PMID: 23528831.

113. Weiner SD, Ahmed HN, Jin Z, Cushman M, Herrington DM, Nelson JC, Di Tullio MR, Homma S. Systemic inflammation and brachial artery endothelial function in the Multi-Ethnic Study of Atherosclerosis (MESA). Heart. 2014;100(11):862-6. Epub 2014/04/10. doi: 10.1136/heartjnl-2013-304893. PubMed PMID: 24714919.

114. Altun I, Oz F, Arkaya SC, Altun I, Bilge AK, Umman B, Turkoglu UM. Effect of statins on endothelial function in patients with acute coronary syndrome: a prospective study using adhesion molecules and flow-mediated dilatation. J Clin Med Res. 2014;6(5):354-61. Epub 2014/08/12. doi: 10.14740/jocmr1863w. PubMed PMID: 25110539; PMCID: PMC4125330.

115. Gimbrone MA, Jr., Garcia-Cardena G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res. 2016;118(4):620-36. Epub 2016/02/20. doi: 10.1161/CIRCRESAHA.115.306301. PubMed PMID: 26892962; PMCID: PMC4762052.

116. Jensen HA, Mehta JL. Endothelial cell dysfunction as a novel therapeutic target in atherosclerosis. Expert Rev Cardiovasc Ther. 2016;14(9):1021-33. Epub 2016/07/01. doi: 10.1080/14779072.2016.1207527. PubMed PMID: 27362558.

117. Bentz GL, Jarquin-Pardo M, Chan G, Smith MS, Sinzger C, Yurochko AD. Human cytomegalovirus (HCMV) infection of endothelial cells promotes naive monocyte extravasation and transfer of productive virus to enhance hematogenous dissemination of HCMV. J Virol. 2006;80(23):11539-55. Epub 2006/09/22. doi: 10.1128/JVI.01016-06. PubMed PMID: 16987970; PMCID: PMC1642592.

118. DuRose JB, Li J, Chien S, Spector DH. Infection of vascular endothelial cells with human cytomegalovirus under fluid shear stress reveals preferential entry and spread of virus in flow conditions simulating atheroprone regions of the artery. J Virol. 2012;86(24):13745-55. Epub 2012/10/12. doi: 10.1128/JVI.02244-12. PubMed PMID: 23055562; PMCID: PMC3503096.

119. Lunardi C, Dolcino M, Peterlana D, Bason C, Navone R, Tamassia N, Tinazzi E, Beri R, Corrocher R, Puccetti A. Endothelial cells’ activation and apoptosis induced by a subset of antibodies against human cytomegalovirus: relevance to the pathogenesis of atherosclerosis. PLoS One. 2007;2(5):e473. Epub 2007/05/31. doi: 10.1371/journal.pone.0000473. PubMed PMID: 17534423; PMCID: PMC1868596.

120. Tabata T, Kawakatsu H, Maidji E, Sakai T, Sakai K, Fang-Hoover J, Aiba M, Sheppard D, Pereira L. Induction of an epithelial integrin alphavbeta6 in human cytomegalovirus-infected endothelial cells leads to activation of transforming growth factor-beta1 and increased collagen production. Am J Pathol. 2008;172(4):1127-40. Epub 2008/03/20. doi: 10.2353/ajpath.2008.070448. PubMed PMID: 18349127; PMCID: PMC2276431.

121. Ghielmetti M, Millard AL, Haeberli L, Bossart W, Seebach JD, Schneider MK, Mueller NJ. Human CMV infection of porcine endothelial cells increases adhesion receptor expression and human leukocyte recruitment. Transplantation. 2009;87(12):1792-800. Epub 2009/06/23. doi: 10.1097/TP.0b013e3181a75a41. PubMed PMID: 19543055.

122. Popovic M, Smiljanic K, Dobutovic B, Syrovets T, Simmet T, Isenovic ER. Human cytomegalovirus infection and atherothrombosis. J Thromb Thrombolysis. 2012;33(2):160-72. Epub 2011/12/14. doi: 10.1007/s11239-011-0662-x. PubMed PMID: 22161772.

123. Gustafsson KLR, Renne T, Soderberg-Naucler C, Butler LM. Human cytomegalovirus replication induces endothelial cell interleukin-11. Cytokine. 2018;111:563-6. Epub 2018/05/29. doi: 10.1016/j.cyto.2018.05.018. PubMed PMID: 29807687; PMCID: PMC6299253.

124. Bolovan-Fritts CA, Trout RN, Spector SA. High T-cell response to human cytomegalovirus induces chemokine-mediated endothelial cell damage. Blood. 2007;110(6):1857-63. Epub 2007/05/24. doi: 10.1182/blood-2007-03-078881. PubMed PMID: 17519388; PMCID: PMC1976357.

125. Khoretonenko MV, Leskov IL, Jennings SR, Yurochko AD, Stokes KY. Cytomegalovirus infection leads to microvascular dysfunction and exacerbates hypercholesterolemia-induced responses. Am J Pathol. 2010;177(4):2134-44. Epub 2010/08/31. doi: 10.2353/ajpath.2010.100307. PubMed PMID: 20802174; PMCID: PMC2947306.

126. Gombos RB, Brown JC, Teefy J, Gibeault RL, Conn KL, Schang LM, Hemmings DG. Vascular dysfunction in young, mid-aged and aged mice with latent cytomegalovirus infections. Am J Physiol Heart Circ Physiol. 2013;304(2):H183-94. Epub 2012/11/06. doi: 10.1152/ajpheart.00461.2012. PubMed PMID: 23125213; PMCID: PMC3543669.

127. Straat K, de Klark R, Gredmark-Russ S, Eriksson P, Soderberg-Naucler C. Infection with human cytomegalovirus alters the MMP-9/TIMP-1 balance in human macrophages. J Virol. 2009;83(2):830-5. Epub 2008/10/24. doi: 10.1128/JVI.01363-08. PubMed PMID: 18945772; PMCID: PMC2612361.

128. Rahbar A, Soderberg-Naucler C. Human cytomegalovirus infection of endothelial cells triggers platelet adhesion and aggregation. J Virol. 2005;79(4):2211-20. Epub 2005/02/01. doi: 10.1128/JVI.79.4.2211-2220.2005. PubMed PMID: 15681423; PMCID: PMC546536.

129. Alfawaz A. Cytomegalovirus-related corneal endotheliitis: A review article. Saudi J Ophthalmol. 2013;27(1):47-9. Epub 2013/08/22. doi: 10.1016/j.sjopt.2011.10.001. PubMed PMID: 23964187; PMCID: PMC3729553.

130. Grahame-Clarke C, Chan NN, Andrew D, Ridgway GL, Betteridge DJ, Emery V, Colhoun HM, Vallance P. Human cytomegalovirus seropositivity is associated with impaired vascular function. Circulation. 2003;108(6):678-83. Epub 2003/08/06. doi: 10.1161/01.CIR.0000084505.54603.C7. PubMed PMID: 12900349.

131. Haarala A, Kahonen M, Lehtimaki T, Aittoniemi J, Jylhava J, Hutri-Kahonen N, Taittonen L, Laitinen T, Juonala M, Viikari J, Raitakari OT, Hurme M. Relation of high cytomegalovirus antibody titres to blood pressure and brachial artery flow-mediated dilation in young men: the Cardiovascular Risk in Young Finns Study. Clin Exp Immunol. 2012;167(2):309-16. Epub 2012/01/13. doi: 10.1111/j.1365-2249.2011.04513.x. PubMed PMID: 22236008; PMCID: PMC3278698.

132. Khairy P, Rinfret S, Tardif JC, Marchand R, Shapiro S, Brophy J, Dupuis J. Absence of association between infectious agents and endothelial function in healthy young men. Circulation. 2003;107(15):1966-71. Epub 2003/04/19. doi: 10.1161/01.CIR.0000064895.89033.97. PubMed PMID: 12681997.

133. Oshima T, Ozono R, Yano Y, Oishi Y, Teragawa H, Higashi Y, Yoshizumi M, Kambe M. Association of Helicobacter pylori infection with systemic inflammation and endothelial dysfunction in healthy male subjects. J Am Coll Cardiol. 2005;45(8):1219-22. Epub 2005/04/20. doi: 10.1016/j.jacc.2005.01.019. PubMed PMID: 15837252.

134. Simmonds J, Fenton M, Dewar C, Ellins E, Storry C, Cubitt D, Deanfield J, Klein N, Halcox J, Burch M. Endothelial dysfunction and cytomegalovirus replication in pediatric heart transplantation. Circulation. 2008;117(20):2657-61. Epub 2008/05/14. doi: 10.1161/CIRCULATIONAHA.107.718874. PubMed PMID: 18474812.

135. Petrakopoulou P, Kubrich M, Pehlivanli S, Meiser B, Reichart B, von Scheidt W, Weis M. Cytomegalovirus infection in heart transplant recipients is associated with impaired endothelial function. Circulation. 2004;110(11 Suppl 1):II207-12. Epub 2004/09/15. doi: 10.1161/01.CIR.0000138393.99310.1c. PubMed PMID: 15364864.

136. Weis M, Kledal TN, Lin KY, Panchal SN, Gao SZ, Valantine HA, Mocarski ES, Cooke JP. Cytomegalovirus infection impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine in transplant arteriosclerosis. Circulation. 2004;109(4):500-5. Epub 2004/01/21. doi: 10.1161/01.CIR.0000109692.16004.AF. PubMed PMID: 14732750.

137. Prasad A, Zhu J, Halcox JP, Waclawiw MA, Epstein SE, Quyyumi AA. Predisposition to atherosclerosis by infections: role of endothelial dysfunction. Circulation. 2002;106(2):184-90. Epub 2002/07/10. doi: 10.1161/01.cir.0000021125.83697.21. PubMed PMID: 12105156.

138. Nikitskaya E, Lebedeva A, Ivanova O, Maryukhnich E, Shpektor A, Grivel JC, Margolis L, Vasilieva E. Cytomegalovirus-Productive Infection Is Associated With Acute Coronary Syndrome. J Am Heart Assoc. 2016;5(8). Epub 2016/08/21. doi: 10.1161/JAHA.116.003759. PubMed PMID: 27543799; PMCID: PMC5015295.

139. Lebedeva A, Maryukhnich E, Grivel JC, Vasilieva E, Margolis L, Shpektor A. Productive Cytomegalovirus Infection Is Associated With Impaired Endothelial Function in ST-Elevation Myocardial Infarction. Am J Med. 2020;133(1):133-42. Epub 2019/07/12. doi: 10.1016/j.amjmed.2019.06.021. PubMed PMID: 31295440; PMCID: PMC6940528.

140. Younes SA, Freeman ML, Mudd JC, Shive CL, Reynaldi A, Panigrahi S, Estes JD, Deleage C, Lucero C, Anderson J, Schacker TW, Davenport MP, McCune JM, Hunt PW, Lee SA, Serrano-Villar S, Debernardo RL, Jacobson JM, Canaday DH, Sekaly RP, Rodriguez B, Sieg SF, Lederman MM. IL-15 promotes activation and expansion of CD8+ T cells in HIV-1 infection. J Clin Invest. 2016;126(7):2745-56. Epub 2016/06/21. doi: 10.1172/JCI85996. PubMed PMID: 27322062; PMCID: PMC4922693.

141. Pangrazzi L, Naismith E, Meryk A, Keller M, Jenewein B, Trieb K, Grubeck-Loebenstein B. Increased IL-15 Production and Accumulation of Highly Differentiated CD8(+) Effector/Memory T Cells in the Bone Marrow of Persons with Cytomegalovirus. Front Immunol. 2017;8:715. Epub 2017/07/05. doi: 10.3389/fimmu.2017.00715. PubMed PMID: 28674537; PMCID: PMC5474847.

142. Baumann NS, Torti N, Welten SPM, Barnstorf I, Borsa M, Pallmer K, Oduro JD, Cicin-Sain L, Ikuta K, Ludewig B, Oxenius A. Tissue maintenance of CMV-specific inflationary memory T cells by IL-15. PLoS Pathog. 2018;14(4):e1006993. Epub 2018/04/14. doi: 10.1371/journal.ppat.1006993. PubMed PMID: 29652930; PMCID: PMC5919076.

143. Kaibe M, Ohishi M, Ito N, Yuan M, Takagi T, Terai M, Tatara Y, Komai N, Rakugi H, Ogihara T. Serum interleukin-15 concentration in patients with essential hypertension. Am J Hypertens. 2005;18(8):1019-25. Epub 2005/08/20. doi: 10.1016/j.amjhyper.2005.02.014. PubMed PMID: 16109314.

144. Dozio E, Malavazos AE, Vianello E, Briganti S, Dogliotti G, Bandera F, Giacomazzi F, Castelvecchio S, Menicanti L, Sigruener A, Schmitz G, Corsi Romanelli MM. Interleukin-15 and soluble interleukin-15 receptor alpha in coronary artery disease patients: association with epicardial fat and indices of adipose tissue distribution. PLoS One. 2014;9(3):e90960. Epub 2014/03/08. doi: 10.1371/journal.pone.0090960. PubMed PMID: 24603895; PMCID: PMC3948349.

145. van Es T, van Puijvelde GH, Michon IN, van Wanrooij EJ, de Vos P, Peterse N, van Berkel TJ, Kuiper J. IL-15 aggravates atherosclerotic lesion development in LDL receptor deficient mice. Vaccine. 2011;29(5):976-83. Epub 2010/12/01. doi: 10.1016/j.vaccine.2010.11.037. PubMed PMID: 21115056.

146. Houtkamp MA, van Der Wal AC, de Boer OJ, van Der Loos CM, de Boer PA, Moorman AF, Becker AE. Interleukin-15 expression in atherosclerotic plaques: an alternative pathway for T-cell activation in atherosclerosis? Arteriosclerosis, thrombosis, and vascular biology. 2001;21(7):1208-13. Epub 2001/07/14. doi: 10.1161/hq0701.092162. PubMed PMID: 11451753.

147. Wuttge DM, Eriksson P, Sirsjo A, Hansson GK, Stemme S. Expression of interleukin-15 in mouse and human atherosclerotic lesions. Am J Pathol. 2001;159(2):417-23. Epub 2001/08/04. doi: 10.1016/S0002-9440(10)61712-9. PubMed PMID: 11485899; PMCID: PMC1850554.

148. Sieg SF, Bazdar DA, Zidar D, Freeman M, Lederman MM, Funderburg NT. Highly oxidized low-density lipoprotein mediates activation of monocytes but does not confer interleukin-1beta secretion nor interleukin-15 transpresentation function. Immunology. 2020;159(2):221-30. Epub 2019/10/31. doi: 10.1111/imm.13142. PubMed PMID: 31663113; PMCID: PMC6954695.

149. Walker JD, Maier CL, Pober JS. Cytomegalovirus-infected human endothelial cells can stimulate allogeneic CD4+ memory T cells by releasing antigenic exosomes. Journal of immunology. 2009;182(3):1548-59. Epub 2009/01/22. doi: 10.4049/jimmunol.182.3.1548. PubMed PMID: 19155503; PMCID: PMC2630120.

150. Zicari S, Arakelyan A, Palomino RAN, Fitzgerald W, Vanpouille C, Lebedeva A, Schmitt A, Bomsel M, Britt W, Margolis L. Human cytomegalovirus-infected cells release extracellular vesicles that carry viral surface proteins. Virology. 2018;524:97-105. Epub 2018/08/31. doi: 10.1016/j.virol.2018.08.008. PubMed PMID: 30165311; PMCID: PMC6258833.

151. Vagida M, Arakelyan A, Lebedeva A, Grivel JC, Shpektor A, Vasilieva E, Margolis L. Flow analysis of individual blood extracellular vesicles in acute coronary syndrome. Platelets. 2017;28(2):165-73. Epub 2016/10/19. doi: 10.1080/09537104.2016.1212002. PubMed PMID: 27595614; PMCID: PMC5811196.

152. Dargan DJ, Subak-Sharpe JH. The effect of herpes simplex virus type 1 L-particles on virus entry, replication, and the infectivity of naked herpesvirus DNA. Virology. 1997;239(2):378-88. Epub 1998/01/22. doi: 10.1006/viro.1997.8893. PubMed PMID: 9434728.

153. Rozmyslowicz T, Majka M, Kijowski J, Murphy SL, Conover DO, Poncz M, Ratajczak J, Gaulton GN, Ratajczak MZ. Platelet- and megakaryocyte-derived microparticles transfer CXCR4 receptor to CXCR4-null cells and make them susceptible to infection by X4-HIV. Aids. 2003;17(1):33-42. Epub 2002/12/13. doi: 10.1097/00002030-200301030-00006. PubMed PMID: 12478067.

154. Wiley RD, Gummuluru S. Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc Natl Acad Sci U S A. 2006;103(3):738-43. Epub 2006/01/13. doi: 10.1073/pnas.0507995103. PubMed PMID: 16407131; PMCID: PMC1334656.

155. Ramakrishnaiah V, Thumann C, Fofana I, Habersetzer F, Pan Q, de Ruiter PE, Willemsen R, Demmers JA, Stalin Raj V, Jenster G, Kwekkeboom J, Tilanus HW, Haagmans BL, Baumert TF, van der Laan LJ. Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. Proc Natl Acad Sci U S A. 2013;110(32):13109-13. Epub 2013/07/24. doi: 10.1073/pnas.1221899110. PubMed PMID: 23878230; PMCID: PMC3740869.

156. Meckes DG, Jr., Raab-Traub N. Microvesicles and viral infection. J Virol. 2011;85(24):12844-54. Epub 2011/10/07. doi: 10.1128/JVI.05853-11. PubMed PMID: 21976651; PMCID: PMC3233125.

157. Suades R, Padro T, Alonso R, Mata P, Badimon L. Lipid-lowering therapy with statins reduces microparticle shedding from endothelium, platelets and inflammatory cells. Thromb Haemost. 2013;110(2):366-77. Epub 2013/06/07. doi: 10.1160/TH13-03-0238. PubMed PMID: 23740299.

158. Ponroy N, Taveira A, Mueller NJ, Millard AL. Statins demonstrate a broad anti-cytomegalovirus activity in vitro in ganciclovir-susceptible and resistant strains. J Med Virol. 2015;87(1):141-53. Epub 2014/07/01. doi: 10.1002/jmv.23998. PubMed PMID: 24976258.

159. Yi L, Wang JW, Zhao RG, Tuo HZ, Feng ZJ, Wang DX. [Fluvastatin’s effect on atherogenesis in apolipoprotein-E knockout mice infected by cytomegalovirus]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2010;24(6):433-5. Epub 2011/05/25. PubMed PMID: 21604568.

160. Kloppenburg G, de Graaf R, Herngreen S, Grauls G, Bruggeman C, Stassen F. Cytomegalovirus aggravates intimal hyperplasia in rats by stimulating smooth muscle cell proliferation. Microbes Infect. 2005;7(2):164-70. Epub 2005/02/18. doi: 10.1016/j.micinf.2004.10.008. PubMed PMID: 15716015.

161. Lemstrom KB, Bruning JH, Bruggeman CA, Lautenschlager IT, Hayry PJ. Cytomegalovirus infection enhances smooth muscle cell proliferation and intimal thickening of rat aortic allografts. J Clin Invest. 1993;92(2):549-58. Epub 1993/08/01. doi: 10.1172/JCI116622. PubMed PMID: 8394384; PMCID: PMC294886.

162. Lemstrom KB, Koskinen PK, Bruning JH, Bruggeman CA, Lautenschlager IT, Hayry PJ. Effect of ganciclovir prophylaxis on cytomegalovirus-enhanced allograft arteriosclerosis. Transpl Int. 1994;7 Suppl 1:S383-4. Epub 1994/01/01. doi: 10.1111/j.1432-2277.1994.tb01398.x. PubMed PMID: 11271259.

163. Lemstrom K, Koskinen P, Krogerus L, Daemen M, Bruggeman C, Hayry P. Cytomegalovirus antigen expression, endothelial cell proliferation, and intimal thickening in rat cardiac allografts after cytomegalovirus infection. Circulation. 1995;92(9):2594-604. Epub 1995/11/01. doi: 10.1161/01.cir.92.9.2594. PubMed PMID: 7586362.

164. Tang-Feldman YJ, Lochhead SR, Lochhead GR, Yu C, George M, Villablanca AC, Pomeroy C. Murine cytomegalovirus (MCMV) infection upregulates P38 MAP kinase in aortas of Apo E KO mice: a molecular mechanism for MCMV-induced acceleration of atherosclerosis. J Cardiovasc Transl Res. 2013;6(1):54-64. Epub 2012/11/30. doi: 10.1007/s12265-012-9428-x. PubMed PMID: 23192592; PMCID: PMC4591060.

165. Springer KL, Weinberg A. Cytomegalovirus infection in the era of HAART: fewer reactivations and more immunity. J Antimicrob Chemother. 2004;54(3):582-6. Epub 2004/07/30. doi: 10.1093/jac/dkh396. PubMed PMID: 15282241.

166. Lederman MM, Funderburg NT, Sekaly RP, Klatt NR, Hunt PW. Residual immune dysregulation syndrome in treated HIV infection. Advances in immunology. 2013;119:51-83. Epub 2013/07/28. doi: 10.1016/B978-0-12-407707-2.00002-3. PubMed PMID: 23886064; PMCID: PMC4126613.

167. Barrett L, Stapleton SN, Fudge NJ, Grant MD. Immune resilience in HIV-infected individuals seronegative for cytomegalovirus. Aids. 2014;28(14):2045-9. Epub 2014/09/30. doi: 10.1097/QAD.0000000000000405. PubMed PMID: 25265072.

168. Hunt PW, Martin JN, Sinclair E, Epling L, Teague J, Jacobson MA, Tracy RP, Corey L, Deeks SG. Valganciclovir reduces T cell activation in HIV-infected individuals with incomplete CD4+ T cell recovery on antiretroviral therapy. J Infect Dis. 2011;203(10):1474-83. Epub 2011/04/20. doi: 10.1093/infdis/jir060. PubMed PMID: 21502083; PMCID: PMC3080892.

169. Maidji E, Somsouk M, Rivera JM, Hunt PW, Stoddart CA. Replication of CMV in the gut of HIV-infected individuals and epithelial barrier dysfunction. PLoS Pathog. 2017;13(2):e1006202. Epub 2017/02/28. doi: 10.1371/journal.ppat.1006202. PubMed PMID: 28241080; PMCID: PMC5328284.

170. Marty FM, Ljungman P, Chemaly RF, Maertens J, Dadwal SS, Duarte RF, Haider S, Ullmann AJ, Katayama Y, Brown J, Mullane KM, Boeckh M, Blumberg EA, Einsele H, Snydman DR, Kanda Y, DiNubile MJ, Teal VL, Wan H, Murata Y, Kartsonis NA, Leavitt RY, Badshah C. Letermovir Prophylaxis for Cytomegalovirus in Hematopoietic-Cell Transplantation. N Engl J Med. 2017;377(25):2433-44. Epub 2017/12/07. doi: 10.1056/NEJMoa1706640. PubMed PMID: 29211658.

171. Bowman LJ, Melaragno JI, Brennan DC. Letermovir for the management of cytomegalovirus infection. Expert Opin Investig Drugs. 2017;26(2):235-41. Epub 2016/12/22. doi: 10.1080/13543784.2017.1274733. PubMed PMID: 27998189.

172. Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A, Allers K, Schneider T, Hofmann J, Kucherer C, Blau O, Blau IW, Hofmann WK, Thiel E. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009;360(7):692-8. Epub 2009/02/14. doi: 10.1056/NEJMoa0802905. PubMed PMID: 19213682.

173. Gupta RK, Abdul-Jawad S, McCoy LE, Mok HP, Peppa D, Salgado M, Martinez-Picado J, Nijhuis M, Wensing AMJ, Lee H, Grant P, Nastouli E, Lambert J, Pace M, Salasc F, Monit C, Innes AJ, Muir L, Waters L, Frater J, Lever AML, Ed

Most read articles by the same author(s)