Circulating LOXL2 Levels Reflect Severity of Intestinal Fibrosis and GALT CD4+ T Lymphocyte Depletion in Treated HIV Infection

Main Article Content

Sophie Seang
Anoma Somasunderam
Maitreyee Nigalye
Ma Somsouk
Timothy W. Schacker
Joyce L. Sanchez
Peter W. Hunt
Netanya S. Utay
Jordan E. Lake


Background: Incomplete immune reconstitution may occur despite successful antiretroviral therapy (ART). Gut-associated lymphoid tissue (GALT) fibrosis may contribute via local CD4+ T lymphocyte depletion, intestinal barrier disruption, microbial translocation, and immune activation.

Methods: In a cross-sectional analysis, we measured circulating fibrosis biomarker levels on cryopreserved plasma from adult HIV-infected (HIV+) SCOPE study participants on suppressive ART who also had fibrosis quantification on recto-sigmoid biopsies. Relationships among biomarker levels, clinical and demographic variables, GALT lymphoid aggregate (LA) collagen deposition, and LA CD4+ T lymphocyte density were analyzed using simple regression. Biomarker levels were also compared to levels in HIV+ viremic SCOPE participants and a convenience sample of HIV-uninfected (HIV-) samples.

Results: HIV+ aviremic participants (n=39) were 92% male and 41% non-white, with median age 48 years, CD4+ T lymphocyte count 277 cells/mm3, and 17 years since HIV diagnosis. Most biomarkers were lower in HIV− (n=36) vs HIV+ aviremic individuals, although CXCL4 levels were higher. HIV+ viremic individuals (N=18) had higher median TGF-ß3, CIC-C1Q, and TIMP-1 (P<0.05) and lower LOXL2 levels (P=0.08) than HIV+ aviremic individuals. Only higher LOXL2 levels correlated with more GALT collagen deposition (R=0.44, P=0.007) and lower LA CD4+ T lymphocyte density (R=−0.32, P=0.05) among aviremic individuals.

Conclusions: Circulating LOXL2 levels may be a noninvasive measure of intestinal fibrosis and GALT CD4+T lymphocyte depletion in treated HIV infection. LOXL2 crosslinks elastin and collagen, and elevated LOXL2 levels occur in pathologic states, making LOXL2 inhibition a potential interventional target for intestinal fibrosis and its sequelae.



Download data is not yet available.

Article Details

Author Biography

Sophie Seang, Pitie Salpétrière Hospital Pierre et Marie University

Infectious Disease department


1. Moore RD, Keruly JC. CD4+ cell count 6 years after commencement of highly active antiretroviral therapy in persons with sustained virologic suppression. Clin Infect Dis. 2007;44(3):441-6. PubMed PMID: 17205456. doi:

2. Le Moing V, Thiebaut R, Chene G, Sobel A, Massip P, Collin F, Meyohas M, Al Kaied F, Leport C, Raffi F, Group ACS. Long-term evolution of CD4 count in patients with a plasma HIV RNA persistently <500 copies/mL during treatment with antiretroviral drugs. HIV Med. 2007;8(3):156-63. PubMed PMID: 17461859. doi: 10.1111/j.1468-1293.2007.00446.x

3. Pacheco YM, Jarrin I, Del Amo J, Moreno S, Iribarren JA, Viciana P, Parra J, Gomez-Sirvent JL, Gutierrez F, Blanco JR, Vidal F, Leal M, Co RM. Risk factors, CD4 long-term evolution and mortality of HIV-infected patients who persistently maintain low CD4 counts, despite virological response to HAART. Curr HIV Res. 2009;7(6):612-9. PubMed PMID: 19929797.

4. Brenchley JM, Schacker TW, Ruff LE, Price DA, Taylor JH, Beilman GJ, Nguyen PL, Khoruts A, Larson M, Haase AT, Douek DC. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med. 2004;200(6):749-59. PubMed PMID: 15365096. Pubmed Central PMCID: PMC2211962. doi: 10.1084/jem.20040874

5. Schacker TW, Brenchley JM, Beilman GJ, Reilly C, Pambuccian SE, Taylor J, Skarda D, Larson M, Douek DC, Haase AT. Lymphatic tissue fibrosis is associated with reduced numbers of naive CD4+ T cells in human immunodeficiency virus type 1 infection. Clin Vaccine Immunol. 2006;13(5):556-60. PubMed PMID: 16682476. Pubmed Central PMCID: PMC1459657. doi: 10.1128/CVI.13.5.556-560.2006

6. Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases. J Pathol. 2003;200(4):500-3. PubMed PMID: 12845617. doi: 10.1002/path.1427

7. Asmuth DM, Pinchuk IV, Wu J, Vargas G, Chen X, Mann S, Albanese A, Ma ZM, Saroufeem R, Melcher GP, Troia-Cancio P, Torok NJ, Miller CJ, Powell DW. Role of intestinal myofibroblasts in HIV-associated intestinal collagen deposition and immune reconstitution following combination antiretroviral therapy. AIDS. 2015;29(8):877-88. PubMed PMID: 25784439. Pubmed Central PMCID: PMC4520701. doi: 10.1097/QAD.0000000000000636

8. Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, Wu S, Lang R, Iredale JP. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest. 2005;115(1):56-65. PubMed PMID: 15630444. Pubmed Central PMCID: PMC539199. doi: 10.1172/JCI22675

9. Tadmor T, Bejar J, Attias D, Mischenko E, Sabo E, Neufeld G, Vadasz Z. The expression of lysyl-oxidase gene family members in myeloproliferative neoplasms. Am J Hematol. 2013;88(5):355-8. PubMed PMID: 23494965. doi: 10.1002/ajh.23409

10. Ahn SG, Dong SM, Oshima A, Kim WH, Lee HM, Lee SA, Kwon SH, Lee JH, Lee JM, Jeong J, Lee HD, Green JE. LOXL2 expression is associated with invasiveness and negatively influences survival in breast cancer patients. Breast Cancer Res Treat. 2013;141(1):89-99. PubMed PMID: 23933800. doi: 10.1007/s10549-013-2662-3

11. Church JA, Jordan SC, Keens TG, Wang CI. Circulating immune complexes in patients with cystic fibrosis. Chest. 1981;80(4):405-11. PubMed PMID: 7273892.

12. van Bon L, Affandi AJ, Broen J, Christmann RB, Marijnissen RJ, Stawski L, Farina GA, Stifano G, Mathes AL, Cossu M, York M, Collins C, Wenink M, Huijbens R, Hesselstrand R, Saxne T, DiMarzio M, Wuttge D, Agarwal SK, Reveille JD, Assassi S, Mayes M, Deng Y, Drenth JP, de Graaf J, den Heijer M, Kallenberg CG, Bijl M, Loof A, van den Berg WB, Joosten LA, Smith V, de Keyser F, Scorza R, Lunardi C, van Riel PL, Vonk M, van Heerde W, Meller S, Homey B, Beretta L, Roest M, Trojanowska M, Lafyatis R, Radstake TR. Proteome-wide analysis and CXCL4 as a biomarker in systemic sclerosis. N Engl J Med. 2014;370(5):433-43. PubMed PMID: 24350901. Pubmed Central PMCID: PMC4040466. doi: 10.1056/NEJMoa1114576

13. Sanchez JL, Hunt PW, Reilly CS, Hatano H, Beilman GJ, Khoruts A, Jasurda JS, Somsouk M, Thorkelson A, Russ S, Anderson J, Deeks SG, Schacker TW. Lymphoid fibrosis occurs in long-term nonprogressors and persists with antiretroviral therapy but may be reversible with curative interventions. J Infect Dis. 2015;211(7):1068-75. PubMed PMID: 25344521. Pubmed Central PMCID: PMC4416122. doi: 10.1093/infdis/jiu586

14. Guadalupe M, Reay E, Sankaran S, Prindiville T, Flamm J, McNeil A, Dandekar S. Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J Virol. 2003;77(21):11708-17. PubMed PMID: 14557656. Pubmed Central PMCID: PMC229357.

15. Marchetti G, Tincati C, Silvestri G. Microbial translocation in the pathogenesis of HIV infection and AIDS. Clin Microbiol Rev. 2013;26(1):2-18. PubMed PMID: 23297256. Pubmed Central PMCID: PMC3553668. doi: 10.1128/CMR.00050-12

16. Racz P, Tenner-Racz K, van Vloten F, Schmidt H, Dietrich M, Gluckman JC, Letvin NL, Janossy G. Lymphatic tissue changes in AIDS and other retrovirus infections: tools and insights. Lymphology. 1990;23(2):85-91. PubMed PMID: 2170778.

17. Orenstein JM, Feinberg M, Yoder C, Schrager L, Mican JM, Schwartzentruber DJ, Davey RT, Jr, Walker RE, Falloon J, Kovacs JA, Miller KD, Fox C, Metcalf JA, Masur H, Polis MA. Lymph node architecture preceding and following 6 months of potent antiviral therapy: follicular hyperplasia persists in parallel with p24 antigen restoration after involution and CD4 cell depletion in an AIDS patient. AIDS. 1999;13(16):2219-29. PubMed PMID: 10563707.

18. Smith-Mungo LI, Kagan HM. Lysyl oxidase: properties, regulation and multiple functions in biology. Matrix Biol. 1998;16(7):387-98. PubMed PMID: 9524359.

19. Van Bergen T, Marshall D, Van de Veire S, Vandewalle E, Moons L, Herman J, Smith V, Stalmans I. The role of LOX and LOXL2 in scar formation after glaucoma surgery. Invest Ophthalmol Vis Sci. 2013;54(8):5788-96. PubMed PMID: 23821193. doi: 10.1167/iovs.13-11696

20. Zaffryar-Eilot S, Marshall D, Voloshin T, Bar-Zion A, Spangler R, Kessler O, Ghermazien H, Brekhman V, Suss-Toby E, Adam D, Shaked Y, Smith V, Neufeld G. Lysyl oxidase-like-2 promotes tumour angiogenesis and is a potential therapeutic target in angiogenic tumours. Carcinogenesis. 2013;34(10):2370-9. PubMed PMID: 23828904. doi: 10.1093/carcin/bgt241

21. Vadasz Z, Kessler O, Akiri G, Gengrinovitch S, Kagan HM, Baruch Y, Izhak OB, Neufeld G. Abnormal deposition of collagen around hepatocytes in Wilson’s disease is associated with hepatocyte specific expression of lysyl oxidase and lysyl oxidase like protein-2. J Hepatol. 2005;43(3):499-507. PubMed PMID: 16023247. doi: 10.1016/j.jhep.2005.02.052

22. Makawita S, Dimitromanolakis A, Soosaipillai A, Soleas I, Chan A, Gallinger S, Haun RS, Blasutig IM, Diamandis EP. Validation of four candidate pancreatic cancer serological biomarkers that improve the performance of CA19.9. BMC Cancer. 2013;13:404. PubMed PMID: 24007603. Pubmed Central PMCID: PMC3847832. doi: 10.1186/1471-2407-13-404

23. Lin ZY, Chuang WL. Hepatocellular carcinoma cells cause different responses in expressions of cancer-promoting genes in different cancer-associated fibroblasts. Kaohsiung J Med Sci. 2013;29(6):312-8. PubMed PMID: 23684136. doi: 10.1016/j.kjms.2012.08.012

24. Borra VM, Waterval JJ, Stokroos RJ, Manni JJ, Van Hul W. Localization of the gene for hyperostosis cranialis interna to chromosome 8p21 with analysis of three candidate genes. Calcif Tissue Int. 2013;93(1):93-100. PubMed PMID: 23640157. doi: 10.1007/s00223-013-9732-8

25. Li T, Li D, Cheng L, Wu H, Gao Z, Liu Z, Jiang W, Gao YH, Tian F, Zhao L, Wang S. Epithelial-mesenchymal transition induced by hepatitis C virus core protein in cholangiocarcinoma. Ann Surg Oncol. 2010;17(7):1937-44. PubMed PMID: 20162464. doi: 10.1245/s10434-010-0925-3

26. Lakatos G, Hritz I, Varga MZ, Juhasz M, Miheller P, Cierny G, Tulassay Z, Herszenyi L. The impact of matrix metalloproteinases and their tissue inhibitors in inflammatory bowel diseases. Dig Dis. 2012;30(3):289-95. PubMed PMID: 22722554. doi: 10.1159/000336995

27. Diaz A, Garcia F, Mozos A, Caballero M, Leon A, Martinez A, Gil C, Plana M, Gallart T, Gatell JM, Alos L. Lymphoid tissue collagen deposition in HIV-infected patients correlates with the imbalance between matrix metalloproteinases and their inhibitors. J Infect Dis. 2011;203(6):810-3. PubMed PMID: 21343147. Pubmed Central PMCID: PMC3071137. doi: 10.1093/infdis/jiq129

28. Kasahara A, Hayashi N, Mochizuki K, Oshita M, Katayama K, Kato M, Masuzawa M, Yoshihara H, Naito M, Miyamoto T, Inoue A, Asai A, Hijioka T, Fusamoto H, Kamada T. Circulating matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-1 as serum markers of fibrosis in patients with chronic hepatitis C. Relationship to interferon response. J Hepatol. 1997;26(3):574-83. PubMed PMID: 9075665.

29. Larrousse M, Laguno M, Segarra M, De Lazzari E, Martinez E, Blanco JL, Leon A, Deulofeu R, Miquel R, Milinkovic A, Lonca M, Miro JM, Biglia A, Murillas J, Gatell JM, Mallolas J. Noninvasive diagnosis of hepatic fibrosis in HIV/HCV-coinfected patients. J Acquir Immune Defic Syndr. 2007;46(3):304-11. PubMed PMID: 18172937.

30. Lake JE, Martinez-Maza O, Magpantay L, Koletar SL, Palella FJ, Jr, Brown TT. Circulating Markers of Fibrosis Are Associated with Immune Reconstitution Status in HIV-Infected Men. 7th HIV and Aging Workshop. 26-27 September 2016 (Washington DC, USA. Poster 19.).

31. Auerbach DJ, Lin Y, Miao H, Cimbro R, Difiore MJ, Gianolini ME, Furci L, Biswas P, Fauci AS, Lusso P. Identification of the platelet-derived chemokine CXCL4/PF-4 as a broad-spectrum HIV-1 inhibitor. Proc Natl Acad Sci USA. 2012;109(24):9569-74. PubMed PMID: 22645343. Pubmed Central PMCID: PMC3386099. doi: 10.1073/pnas.1207314109

32. Snoep JD, Roest M, Barendrecht AD, De Groot PG, Rosendaal FR, Van Der Bom JG. High platelet reactivity is associated with myocardial infarction in premenopausal women: a population-based case-control study. J Thromb Haemost. 2010;8(5):906-13. PubMed PMID: 20128867. doi: 10.1111/j.1538-7836.2010.03786.x

33. Yasar AS, Erbay AR, Ayaz S, Turhan H, Metin F, Ilkay E, Sabah I. Increased platelet activity in patients with isolated coronary artery ectasia. Coron Artery Dis. 2007;18(6):451-4. PubMed PMID: 17700216. doi: 10.1097/MCA.0b013e3282a30665

34. Popescu ID, Codrici E, Albulescu L, Mihai S, Enciu AM, Albulescu R, Tanase CP. Potential serum biomarkers for glioblastoma diagnostic assessed by proteomic approaches. Proteome Sci. 2014;12(1):47. PubMed PMID: 25298751. Pubmed Central PMCID: PMC4189552. doi: 10.1186/s12953-014-0047-0

35. Wiesner T, Bugl S, Mayer F, Hartmann JT, Kopp HG. Differential changes in platelet VEGF, Tsp, CXCL12, and CXCL4 in patients with metastatic cancer. Clin Exp Metastasis. 2010;27(3):141-9. PubMed PMID: 20182908. doi: 10.1007/s10585-010-9311-6

36. Spaks A. Role of CXC group chemokines in lung cancer development and progression. J Thorac Dis. 2017;9(Suppl 3):S164-S71. PubMed PMID: 28446981. Pubmed Central PMCID: PMC5392545. doi: 10.21037/jtd.2017.03.61

37. Hasegawa M. Biomarkers in systemic sclerosis: Their potential to predict clinical courses. J Dermatol. 2016;43(1):29-38. PubMed PMID: 26782004. doi: 10.1111/1346-8138.13156

Most read articles by the same author(s)