A Refined Human Linear B Cell Epitope Map of Outer Surface Protein C (OspC) From the Lyme Disease Spirochete, Borrelia burgdorferi

Main Article Content

Grace Freeman-Gallant
Kathleen McCarthy
Jennifer Yates
Karen Kulas
Michael J. Rudolph
David J. Vance
Nicholas J. Mantis

Abstract

Background: A detailed understanding of the human antibody response to outer surface protein C (OspC) of Borrelia burgdorferi has important implications for Lyme disease diagnostics and vaccines.


Methods: In this report, 13 peptides encompassing 8 reported OspC linear B-cell epitopes from OspC types A, B, and K, including the largely conserved C-terminus (residues 193-210), were evaluated by multiplex immunoassay (MIA) for IgG reactivity with ~700 human serum samples confirmed positive in a 2-tiered Lyme disease diagnostic assay (Bb+) and ~160 post-treatment Lyme disease (PTLD) serum samples. The vmp-like sequence E (VlsE) C6-17 peptide was included as a positive control.


Results: Serum IgG from Bb+ samples were reactive with 10 of the 13 OspC-derived peptides tested, with the C-terminal peptide (residues 193-210) being the most reactive. Spearman’s rank correlation matrices and hierarchical clustering revealed a strong correlation between 193-210 and VlsE C6-17 peptide reactivity but little demonstrable association between 193-210 and the other OspC peptides or recombinant OspC. OspC peptide reactivities (excluding 193-210) were strongly correlated with each other and were disproportionately influenced by a subset of pan-reactive samples. In the PTLD sample set, none of the OspC-derived peptides were significantly reactive over baseline, even though VlsE C6-17 peptide reactivity remained.


Conclusions: The asynchronous and potentially short-lived serologic response to OspC-derived peptides reveal the complexity of B-cell responses to B. burgdorferi lipoproteins and confounds interpretation of antibody profiles for Lyme disease diagnostics.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

1. Kugeler KJ, Schwartz AM, Delorey MJ, Mead PS, Hinckley AF. Estimating the Frequency of Lyme Disease Diagnoses, United States, 2010-2018. Emerg Infect Dis. 2021;27(2):616-9. doi: 10.3201/eid2702.202731. PubMed PMID: 33496229; PMCID: PMC7853543.

2. Bobe JR, Jutras BL, Horn EJ, Embers ME, Bailey A, Moritz RL, Zhang Y, Soloski MJ, Ostfeld RS, Marconi RT, Aucott J, Ma’ayan A, Keesing F, Lewis K, Ben Mamoun C, Rebman AW, McClune ME, Breitschwerdt EB, Reddy PJ, Maggi R, Yang F, Nemser B, Ozcan A, Garner O, Di Carlo D, Ballard Z, Joung HA, Garcia-Romeu A, Griffiths RR, Baumgarth N, Fallon BA. Recent Progress in Lyme Disease and Remaining Challenges. Front Med (Lausanne). 2021;8:666554. doi: 10.3389/fmed.2021.666554. PubMed PMID: 34485323; PMCID: PMC8416313.

3. Radolf JD, Strle K, Lemieux JE, Strle F. Lyme Disease in Humans. Curr Issues Mol Biol. 2021;42:333-84. doi: 10.21775/cimb.042.333. PubMed PMID: 33303701; PMCID: PMC7946767.

4. Steere AC, Strle F, Wormser GP, Hu LT, Branda JA, Hovius JW, Li X, Mead PS. Lyme borreliosis. Nat Rev Dis Primers. 2016;2:16090. doi: 10.1038/nrdp.2016.90. PubMed PMID: 27976670; PMCID: PMC5539539.

5. Lochhead RB, Strle K, Arvikar SL, Weis JJ, Steere AC. Lyme arthritis: linking infection, inflammation and autoimmunity. Nat Rev Rheumatol. 2021;17(8):449-61. doi: 10.1038/s41584-021-00648-5. PubMed PMID: 34226730; PMCID: PMC9488587.

6. Klempner MS, Hu LT, Evans J, Schmid CH, Johnson GM, Trevino RP, Norton D, Levy L, Wall D, McCall J, Kosinski M, Weinstein A. Two controlled trials of antibiotic treatment in patients with persistent symptoms and a history of Lyme disease. N Engl J Med. 2001;345(2):85-92. doi: 10.1056/NEJM200107123450202. PubMed PMID: 11450676.

7. Marques A. Chronic Lyme disease: a review. Infect Dis Clin North Am. 2008;22(2):341-60, vii-viii. doi: 10.1016/j.idc.2007.12.011. PubMed PMID: 18452806; PMCID: PMC2430045.

8. Aucott JN, Crowder LA, Kortte KB. Development of a foundation for a case definition of post-treatment Lyme disease syndrome. Int J Infect Dis. 2013;17(6):e443-9. doi: 10.1016/j.ijid.2013.01.008. PubMed PMID: 23462300.

9. Aucott JN, Yang T, Yoon I, Powell D, Geller SA, Rebman AW. Risk of post-treatment Lyme disease in patients with ideally-treated early Lyme disease: A prospective cohort study. Int J Infect Dis. 2022;116:230-7. doi: 10.1016/j.ijid.2022.01.033. PubMed PMID: 35066160.

10. Chandra A, Wormser GP, Marques AR, Latov N, Alaedini A. Anti-Borrelia burgdorferi antibody profile in post-Lyme disease syndrome. Clin Vaccine Immunol. 2011;18(5):767-71. doi: 10.1128/CVI.00002-11. PubMed PMID: 21411605; PMCID: PMC3122515.

11. Ghosh R, Joung HA, Goncharov A, Palanisamy B, Ngo K, Pejcinovic K, Krockenberger N, Horn EJ, Garner OB, Ghazal E, O’Kula A, Arnaboldi PM, Dattwyler RJ, Ozcan A, Di Carlo D. Rapid single-tier serodiagnosis of Lyme disease. Nat Commun. 2024;15(1):7124. doi: 10.1038/s41467-024-51067-5. PubMed PMID: 39164226; PMCID: PMC11336255.

12. Blum LK, Adamska JZ, Martin DS, Rebman AW, Elliott SE, Cao RRL, Embers ME, Aucott JN, Soloski MJ, Robinson WH. Robust B Cell Responses Predict Rapid Resolution of Lyme Disease. Front Immunol. 2018;9:1634. doi: 10.3389/fimmu.2018.01634. PubMed PMID: 30072990; PMCID: PMC6060717.

13. Bockenstedt LK, Wooten RM, Baumgarth N. Immune Response to Borrelia: Lessons from Lyme Disease Spirochetes. Curr Issues Mol Biol. 2021;42:145-90. doi: 10.21775/cimb.042.145. PubMed PMID: 33289684; PMCID: PMC10842262.

14. Embers ME, Hasenkampf NR, Jacobs MB, Philipp MT. Dynamic longitudinal antibody responses during Borrelia burgdorferi infection and antibiotic treatment of rhesus macaques. Clin Vaccine Immunol. 2012;19(8):1218-26. doi: 10.1128/CVI.00228-12. PubMed PMID: 22718128; PMCID: PMC3416093.

15. Jiang R, Meng H, Raddassi K, Fleming I, Hoehn KB, Dardick KR, Belperron AA, Montgomery RR, Shalek AK, Hafler DA, Kleinstein SH, Bockenstedt LK. Single-cell immunophenotyping of the skin lesion erythema migrans identifies IgM memory B cells. JCI Insight. 2021;6(12). doi: 10.1172/jci.insight.148035. PubMed PMID: 34061047; PMCID: PMC8262471.

16. Barbour AG, Jasinskas A, Kayala MA, Davies DH, Steere AC, Baldi P, Felgner PL. A genome-wide proteome array reveals a limited set of immunogens in natural infections of humans and white-footed mice with Borrelia burgdorferi. Infect Immun. 2008;76(8):3374-89. doi: 10.1128/IAI.00048-08. PubMed PMID: 18474646; PMCID: PMC2493225.

17. Tilly K, Krum JG, Bestor A, Jewett MW, Grimm D, Bueschel D, Byram R, Dorward D, Vanraden MJ, Stewart P, Rosa P. Borrelia burgdorferi OspC protein required exclusively in a crucial early stage of mammalian infection. Infect Immun. 2006;74(6):3554-64. doi: 10.1128/IAI.01950-05. PubMed PMID: 16714588; PMCID: PMC1479285.

18. Pal U, Yang X, Chen M, Bockenstedt LK, Anderson JF, Flavell RA, Norgard MV, Fikrig E. OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J Clin Invest. 2004;113(2):220-30. doi: 10.1172/JCI19894. PubMed PMID: 14722614; PMCID: PMC311436.

19. Tilly K, Bestor A, Jewett MW, Rosa P. Rapid clearance of Lyme disease spirochetes lacking OspC from skin. Infect Immun. 2007;75(3):1517-9. doi: 10.1128/IAI.01725-06. PubMed PMID: 17158906; PMCID: PMC1828573.

20. Earnhart CG, Leblanc DV, Alix KE, Desrosiers DC, Radolf JD, Marconi RT. Identification of residues within ligand-binding domain 1 (LBD1) of the Borrelia burgdorferi OspC protein required for function in the mammalian environment. Mol Microbiol. 2010;76(2):393-408. doi: 10.1111/j.1365-2958.2010.07103.x. PubMed PMID: 20199597; PMCID: PMC2917209.

21. Caine JA, Coburn J. Multifunctional and Redundant Roles of Borrelia burgdorferi Outer Surface Proteins in Tissue Adhesion, Colonization, and Complement Evasion. Front Immunol. 2016;7:442. doi: 10.3389/fimmu.2016.00442. PubMed PMID: 27818662; PMCID: PMC5073149.

22. Caine JA, Lin YP, Kessler JR, Sato H, Leong JM, Coburn J. Borrelia burgdorferi outer surface protein C (OspC) binds complement component C4b and confers bloodstream survival. Cell Microbiol. 2017;19(12). doi: 10.1111/cmi.12786. PubMed PMID: 28873507; PMCID: PMC5680108.

23. Lin YP, Tan X, Caine JA, Castellanos M, Chaconas G, Coburn J, Leong JM. Strain-specific joint invasion and colonization by Lyme disease spirochetes is promoted by outer surface protein C. PLoS Pathog. 2020;16(5):e1008516. doi: 10.1371/journal.ppat.1008516. PubMed PMID: 32413091; PMCID: PMC7255614.

24. Tan X, Castellanos M, Chaconas G. Choreography of Lyme Disease Spirochete Adhesins To Promote Vascular Escape. Microbiol Spectr. 2023;11(4):e0125423. doi: 10.1128/spectrum.01254-23. PubMed PMID: 37255427; PMCID: PMC10434219.

25. Branda JA, Steere AC. Laboratory Diagnosis of Lyme Borreliosis. Clin Microbiol Rev. 2021;34(2). doi: 10.1128/CMR.00018-19. PubMed PMID: 33504503; PMCID: PMC7849240.

26. Hahm JB, Breneman JWt, Liu J, Rabkina S, Zheng W, Zhou S, Walker RP, Kaul R. A Fully Automated Multiplex Assay for Diagnosis of Lyme Disease with High Specificity and Improved Early Sensitivity. J Clin Microbiol. 2020;58(5). doi: 10.1128/JCM.01785-19. PubMed PMID: 32132190; PMCID: PMC7180237.

27. Bacon RM, Biggerstaff BJ, Schriefer ME, Gilmore RD, Jr., Philipp MT, Steere AC, Wormser GP, Marques AR, Johnson BJ. Serodiagnosis of Lyme disease by kinetic enzyme-linked immunosorbent assay using recombinant VlsE1 or peptide antigens of Borrelia burgdorferi compared with 2-tiered testing using whole-cell lysates. J Infect Dis. 2003;187(8):1187-99. doi: 10.1086/374395. PubMed PMID: 12695997; PMCID: PMC7109709.

28. Arnaboldi PM, Seedarnee R, Sambir M, Callister SM, Imparato JA, Dattwyler RJ. Outer surface protein C peptide derived from Borrelia burgdorferi sensu stricto as a target for serodiagnosis of early lyme disease. Clin Vaccine Immunol. 2013;20(4):474-81. doi: 10.1128/CVI.00608-12. PubMed PMID: 23365204; PMCID: PMC3623407.

29. Baarsma ME, Vrijlandt A, Ursinus J, Zaaijer HL, Jurriaans S, van Dam AP, Hovius JW. Diagnostic performance of the ZEUS Borrelia VlsE1/pepC10 assay in European LB patients: a case-control study. Eur J Clin Microbiol Infect Dis. 2022;41(3):387-93. doi: 10.1007/s10096-021-04372-6. PubMed PMID: 34806121.

30. Coleman AS, Rossmann E, Yang X, Song H, Lamichhane CM, Iyer R, Schwartz I, Pal U. BBK07 immunodominant peptides as serodiagnostic markers of Lyme disease. Clin Vaccine Immunol. 2011;18(3):406-13. doi: 10.1128/CVI.00461-10. PubMed PMID: 21177911; PMCID: PMC3067378.

31. Mathiesen MJ, Christiansen M, Hansen K, Holm A, Asbrink E, Theisen M. Peptide-based OspC enzyme-linked immunosorbent assay for serodiagnosis of Lyme borreliosis. J Clin Microbiol. 1998;36(12):3474-9. doi: 10.1128/JCM.36.12.3474-3479.1998. PubMed PMID: 9817857; PMCID: PMC105224.

32. O’Bier NS, Hatke AL, Camire AC, Marconi RT. Human and Veterinary Vaccines for Lyme Disease. Curr Issues Mol Biol. 2021;42:191-222. doi: 10.21775/cimb.042.191. PubMed PMID: 33289681; PMCID: PMC7946718.

33. Jobe DA, Lovrich SD, Schell RF, Callister SM. C-terminal region of outer surface protein C binds borreliacidal antibodies in sera from patients with Lyme disease. Clin Diagn Lab Immunol. 2003;10(4):573-8. doi: 10.1128/cdli.10.4.573-578.2003. PubMed PMID: 12853388; PMCID: PMC164245.

34. Lovrich SD, Jobe DA, Schell RF, Callister SM. Borreliacidal OspC antibodies specific for a highly conserved epitope are immunodominant in human lyme disease and do not occur in mice or hamsters. Clin Diagn Lab Immunol. 2005;12(6):746-51. doi: 10.1128/CDLI.12.6.746-751.2005. PubMed PMID: 15939749; PMCID: PMC1151971.

35. Earnhart CG, Buckles EL, Dumler JS, Marconi RT. Demonstration of OspC type diversity in invasive human lyme disease isolates and identification of previously uncharacterized epitopes that define the specificity of the OspC murine antibody response. Infect Immun. 2005;73(12):7869-77. doi: 10.1128/IAI.73.12.7869-7877.2005. PubMed PMID: 16299277; PMCID: PMC1307023.

36. Yang X, Li Y, Dunn JJ, Luft BJ. Characterization of a unique borreliacidal epitope on the outer surface protein C of Borrelia burgdorferi. FEMS Immunol Med Microbiol. 2006;48(1):64-74. doi: 10.1111/j.1574-695X.2006.00122.x. PubMed PMID: 16965353.

37. Buckles EL, Earnhart CG, Marconi RT. Analysis of antibody response in humans to the type A OspC loop 5 domain and assessment of the potential utility of the loop 5 epitope in Lyme disease vaccine development. Clin Vaccine Immunol. 2006;13(10):1162-5. doi: 10.1128/CVI.00099-06. PubMed PMID: 17028218; PMCID: PMC1595320.

38. Earnhart CG, Marconi RT. Construction and analysis of variants of a polyvalent Lyme disease vaccine: approaches for improving the immune response to chimeric vaccinogens. Vaccine. 2007;25(17):3419-27. doi: 10.1016/j.vaccine.2006.12.051. PubMed PMID: 17239505; PMCID: PMC2696934.

39. Pulzova L, Flachbartova Z, Bencurova E, Potocnakova L, Comor L, Schreterova E, Bhide M. Identification of B-cell epitopes of Borrelia burgdorferi outer surface protein C by screening a phage-displayed gene fragment library. Microbiol Immunol. 2016;60(10):669-77. doi: 10.1111/1348-0421.12438. PubMed PMID: 27619624.

40. Norek A, Janda L. Epitope mapping of Borrelia burgdorferi OspC protein in homodimeric fold. Protein Sci. 2017;26(4):796-806. doi: 10.1002/pro.3125. PubMed PMID: 28142214; PMCID: PMC5368064.

41. Izac JR, Oliver LD, Jr., Earnhart CG, Marconi RT. Identification of a defined linear epitope in the OspA protein of the Lyme disease spirochetes that elicits bactericidal antibody responses: Implications for vaccine development. Vaccine. 2017;35(24):3178-85. doi: 10.1016/j.vaccine.2017.04.079. PubMed PMID: 28479174; PMCID: PMC8203411.

42. Wilske B, Preac-Mursic V, Jauris S, Hofmann A, Pradel I, Soutschek E, Schwab E, Will G, Wanner G. Immunological and molecular polymorphisms of OspC, an immunodominant major outer surface protein of Borrelia burgdorferi. Infect Immun. 1993;61(5):2182-91. doi: 10.1128/iai.61.5.2182-2191.1993. PubMed PMID: 8478108; PMCID: PMC280819.

43. Barbour AG, Travinsky B. Evolution and distribution of the ospC Gene, a transferable serotype determinant of Borrelia burgdorferi. mBio. 2010;1(4). doi: 10.1128/mBio.00153-10. PubMed PMID: 20877579; PMCID: PMC2945197.

44. Cerar T, Strle F, Stupica D, Ruzic-Sabljic E, McHugh G, Steere AC, Strle K. Differences in Genotype, Clinical Features, and Inflammatory Potential of Borrelia burgdorferi sensu stricto Strains from Europe and the United States. Emerg Infect Dis. 2016;22(5):818-27. doi: 10.3201/eid2205.151806. PubMed PMID: 27088349; PMCID: PMC4861522.

45. Seinost G, Dykhuizen DE, Dattwyler RJ, Golde WT, Dunn JJ, Wang IN, Wormser GP, Schriefer ME, Luft BJ. Four clones of Borrelia burgdorferi sensu stricto cause invasive infection in humans. Infect Immun. 1999;67(7):3518-24. doi: 10.1128/IAI.67.7.3518-3524.1999. PubMed PMID: 10377134; PMCID: PMC116539.

46. Hanincova K, Mukherjee P, Ogden NH, Margos G, Wormser GP, Reed KD, Meece JK, Vandermause MF, Schwartz I. Multilocus sequence typing of Borrelia burgdorferi suggests existence of lineages with differential pathogenic properties in humans. PLoS One. 2013;8(9):e73066. doi: 10.1371/journal.pone.0073066. PubMed PMID: 24069170; PMCID: PMC3775742.

47. Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R, White O, Ketchum KA, Dodson R, Hickey EK, Gwinn M, Dougherty B, Tomb JF, Fleischmann RD, Richardson D, Peterson J, Kerlavage AR, Quackenbush J, Salzberg S, Hanson M, van Vugt R, Palmer N, Adams MD, Gocayne J, Weidman J, Utterback T, Watthey L, McDonald L, Artiach P, Bowman C, Garland S, Fuji C, Cotton MD, Horst K, Roberts K, Hatch B, Smith HO, Venter JC. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature. 1997;390(6660):580-6. doi: 10.1038/37551. PubMed PMID: 9403685.

48. Anderson JF, Flavell RA, Magnarelli LA, Barthold SW, Kantor FS, Wallich R, Persing DH, Mathiesen D, Fikrig E. Novel Borrelia burgdorferi isolates from Ixodes scapularis and Ixodes dentatus ticks feeding on humans. J Clin Microbiol. 1996;34(3):524-9. doi: 10.1128/jcm.34.3.524-529.1996. PubMed PMID: 8904407; PMCID: PMC228839.

49. Steere AC, Grodzicki RL, Kornblatt AN, Craft JE, Barbour AG, Burgdorfer W, Schmid GP, Johnson E, Malawista SE. The spirochetal etiology of Lyme disease. N Engl J Med. 1983;308(13):733-40. doi: 10.1056/NEJM198303313081301. PubMed PMID: 6828118.

50. Rudolph MJ, Davis SA, Haque HME, Weis DD, Vance DJ, Piazza CL, Ejemel M, Cavacini L, Wang Y, Mbow ML, Gilmore RD, Mantis NJ. Structural Elucidation of a Protective B Cell Epitope on Outer Surface Protein C (OspC) of the Lyme Disease Spirochete, Borreliella burgdorferi. mBio. 2023;14(2):e0298122. doi: 10.1128/mbio.02981-22. PubMed PMID: 36976016; PMCID: PMC10128040.

51. Kringelum JV, Lundegaard C, Lund O, Nielsen M. Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS computational biology. 2012;8(12):e1002829. doi: 10.1371/journal.pcbi.1002829. PubMed PMID: 23300419; PMCID: PMC3531324.

52. Gomes-Solecki MJ, Meirelles L, Glass J, Dattwyler RJ. Epitope length, genospecies dependency, and serum panel effect in the IR6 enzyme-linked immunosorbent assay for detection of antibodies to Borrelia burgdorferi. Clin Vaccine Immunol. 2007;14(7):875-9. doi: 10.1128/CVI.00122-07. PubMed PMID: 17538122; PMCID: PMC1951069.

53. Nemeth KL, Yauney E, Rock JM, Bievenue R, Parker MM, Styer LM. Use of Self-Collected Dried Blood Spots and a Multiplex Microsphere Immunoassay to Measure IgG Antibody Response to COVID-19 Vaccines. Microbiol Spectr. 2023;11(1):e0133622. doi: 10.1128/spectrum.01336-22. PubMed PMID: 36622204; PMCID: PMC9927373.

54. Yates JL, Ehrbar DJ, Hunt DT, Girardin RC, Dupuis AP, 2nd, Payne AF, Sowizral M, Varney S, Kulas KE, Demarest VL, Howard KM, Carson K, Hales M, Ejemel M, Li Q, Wang Y, Peredo-Wende R, Ramani A, Singh G, Strle K, Mantis NJ, McDonough KA, Lee WT. Serological analysis reveals an imbalanced IgG subclass composition associated with COVID-19 disease severity. Cell Rep Med. 2021;2(7):100329. doi: 10.1016/j.xcrm.2021.100329. PubMed PMID: 34151306; PMCID: PMC8205277.

55. R core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing,. 2023.

56. Wickham H, Bryan J. readxl: Read Excel Files 1.4.3. 2023. https://readxl.tidyverse.org, https://github.com/tidyverse/readxl.

57. Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen T, Miller E, Bache S, Müller K, Ooms J, Robinson D, Seidel D, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H. Welcome to the Tidyverse. Journal of Open Source Software. 2019;4(43):1686. doi: 10.21105/joss.01686.

58. Wei T, Simko V, Levy M, Xie Y, Jin Y, Zemla J. Package ‘corrplot’. Statistician. 2017;56(316):e24.

59. Kolde R. pheatmap: Pretty Heatmaps 2018 [updated 2018-05-19]. Available from: https://cran.r-project.org/web/packages/pheatmap/index.html.

60. Lemieux JE, Huang W, Hill N, Cerar T, Freimark L, Hernandez S, Luban M, Maraspin V, Bogovic P, Ogrinc K, Ruzic-Sabljic E, Lapierre P, Lasek-Nesselquist E, Singh N, Iyer R, Liveris D, Reed KD, Leong JM, Branda JA, Steere AC, Wormser GP, Strle F, Sabeti PC, Schwartz I, Strle K. Whole genome sequencing of human Borrelia burgdorferi isolates reveals linked blocks of accessory genome elements located on plasmids and associated with human dissemination. PLoS Pathog. 2023;19(8):e1011243. doi: 10.1371/journal.ppat.1011243. PubMed PMID: 37651316; PMCID: PMC10470944.

61. Wormser GP, Brisson D, Liveris D, Hanincova K, Sandigursky S, Nowakowski J, Nadelman RB, Ludin S, Schwartz I. Borrelia burgdorferi genotype predicts the capacity for hematogenous dissemination during early Lyme disease. J Infect Dis. 2008;198(9):1358-64. doi: 10.1086/592279. PubMed PMID: 18781866; PMCID: PMC2776734.

62. Mathiesen MJ, Holm A, Christiansen M, Blom J, Hansen K, Ostergaard S, Theisen M. The dominant epitope of Borrelia garinii outer surface protein C recognized by sera from patients with neuroborreliosis has a surface-exposed conserved structural motif. Infect Immun. 1998;66(9):4073-9. doi: 10.1128/IAI.66.9.4073-4079.1998. PubMed PMID: 9712750; PMCID: PMC108488.

63. Earnhart CG, Rhodes DV, Smith AA, Yang X, Tegels B, Carlyon JA, Pal U, Marconi RT. Assessment of the potential contribution of the highly conserved C-terminal motif (C10) of Borrelia burgdorferi outer surface protein C in transmission and infectivity. Pathog Dis. 2014;70(2):176-84. doi: 10.1111/2049-632X.12119. PubMed PMID: 24376161; PMCID: PMC4497580.

64. Dimitrov JD, Planchais C, Roumenina LT, Vassilev TL, Kaveri SV, Lacroix-Desmazes S. Antibody polyreactivity in health and disease: statu variabilis. J Immunol. 2013;191(3):993-9. doi: 10.4049/jimmunol.1300880. PubMed PMID: 23873158.

65. Dolange V, Simon S, Morel N. Detection of Borrelia burgdorferi antigens in tissues and plasma during early infection in a mouse model. Sci Rep. 2021;11(1):17368. doi: 10.1038/s41598-021-96861-z. PubMed PMID: 34462491; PMCID: PMC8405660.

66. Izac JR, Camire AC, Earnhart CG, Embers ME, Funk RA, Breitschwerdt EB, Marconi RT. Analysis of the antigenic determinants of the OspC protein of the Lyme disease spirochetes: Evidence that the C10 motif is not immunodominant or required to elicit bactericidal antibody responses. Vaccine. 2019;37(17):2401-7. doi: 10.1016/j.vaccine.2019.02.007. PubMed PMID: 30922701; PMCID: PMC6453540.

67. Jacek E, Tang KS, Komorowski L, Ajamian M, Probst C, Stevenson B, Wormser GP, Marques AR, Alaedini A. Epitope-Specific Evolution of Human B Cell Responses to Borrelia burgdorferi VlsE Protein from Early to Late Stages of Lyme Disease. J Immunol. 2016;196(3):1036-43. doi: 10.4049/jimmunol.1501861. PubMed PMID: 26718339; PMCID: PMC4722499.

68. Kirpach J, Colone A, Burckert JP, Faison WJ, Dubois A, Sinner R, Reye AL, Muller CP. Detection of a Low Level and Heterogeneous B Cell Immune Response in Peripheral Blood of Acute Borreliosis Patients With High Throughput Sequencing. Front Immunol. 2019;10:1105. doi: 10.3389/fimmu.2019.01105. PubMed PMID: 31156648; PMCID: PMC6532064.

69. Hoie MH, Gade FS, Johansen JM, Wurtzen C, Winther O, Nielsen M, Marcatili P. DiscoTope-3.0: improved B-cell epitope prediction using inverse folding latent representations. Front Immunol. 2024;15:1322712. doi: 10.3389/fimmu.2024.1322712. PubMed PMID: 38390326; PMCID: PMC10882062.

70. Rebman AW, Crowder LA, Kirkpatrick A, Aucott JN. Characteristics of seroconversion and implications for diagnosis of post-treatment Lyme disease syndrome: acute and convalescent serology among a prospective cohort of early Lyme disease patients. Clin Rheumatol. 2015;34(3):585-9. doi: 10.1007/s10067-014-2706-z. PubMed PMID: 24924604.

71. Reifert J, Kamath K, Bozekowski J, Lis E, Horn EJ, Granger D, Theel ES, Shon J, Sawyer JR, Daugherty PS. Serum Epitope Repertoire Analysis Enables Early Detection of Lyme Disease with Improved Sensitivity in an Expandable Multiplex Format. J Clin Microbiol. 2021;59(2). doi: 10.1128/JCM.01836-20. PubMed PMID: 33148704; PMCID: PMC8111119.

72. Cobaugh CW, Almagro JC, Pogson M, Iverson B, Georgiou G. Synthetic antibody libraries focused towards peptide ligands. J Mol Biol. 2008;378(3):622-33. doi: 10.1016/j.jmb.2008.02.037. PubMed PMID: 18384812; PMCID: PMC2494707.

73. Blum JS, Fiani ML, Stahl PD. Proteolytic cleavage of ricin A chain in endosomal vesicles. Evidence for the action of endosomal proteases at both neutral and acidic pH. J Biol Chem. 1991;266(33):22091-5. PubMed PMID: 1939230.

74. Trier NH, Houen G. Antibody Cross-Reactivity in Auto-Immune Diseases. Int J Mol Sci. 2023;24(17). doi: 10.3390/ijms241713609. PubMed PMID: 37686415; PMCID: PMC10487534.

75. Boughter CT, Borowska MT, Guthmiller JJ, Bendelac A, Wilson PC, Roux B, Adams EJ. Biochemical patterns of antibody polyreactivity revealed through a bioinformatics-based analysis of CDR loops. Elife. 2020;9. doi: 10.7554/eLife.61393. PubMed PMID: 33169668; PMCID: PMC7755423.

76. Mouquet H, Scheid JF, Zoller MJ, Krogsgaard M, Ott RG, Shukair S, Artyomov MN, Pietzsch J, Connors M, Pereyra F, Walker BD, Ho DD, Wilson PC, Seaman MS, Eisen HN, Chakraborty AK, Hope TJ, Ravetch JV, Wardemann H, Nussenzweig MC. Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. Nature. 2010;467(7315):591-5. doi: 10.1038/nature09385. PubMed PMID: 20882016; PMCID: PMC3699875.

77. Iaculli D, Ballet S. Peptide libraries: from epitope mapping to in-depth high-throughput analysis. Trends Pharmacol Sci. 2024;45(7):579-82. doi: 10.1016/j.tips.2024.04.004. PubMed PMID: 38724411.

78. Vance DJ, Freeman-Gallant G, McCarthy K, Piazza CL, Chen Y, Vorauer C, Muriuki B, Rudolph MJ, Cavacini L, Guttman M, Mantis NJ. 2024. doi: 10.1101/2024.11.06.622094.

79. Ikushima M, Yamada F, Kawahashi S, Okuyama Y, Matsui K. Antibody response to OspC-I synthetic peptide derived from outer surface protein C of Borrelia burgdorferi in sera from Japanese forestry workers. Epidemiol Infect. 1999;122(3):429-33. doi: 10.1017/s0950268899002320. PubMed PMID: 10459646; PMCID: PMC2809637.

80. Tokarz R, Mishra N, Tagliafierro T, Sameroff S, Caciula A, Chauhan L, Patel J, Sullivan E, Gucwa A, Fallon B, Golightly M, Molins C, Schriefer M, Marques A, Briese T, Lipkin WI. A multiplex serologic platform for diagnosis of tick-borne diseases. Sci Rep. 2018;8(1):3158. doi: 10.1038/s41598-018-21349-2. PubMed PMID: 29453420; PMCID: PMC5816631.

81. Yu Z, Carter JM, Sigal LH, Stein S. Multi-well ELISA based on independent peptide antigens for antibody capture. Application to Lyme disease serodiagnosis. J Immunol Methods. 1996;198(1):25-33. doi: 10.1016/0022-1759(96)00140-8. PubMed PMID: 8914594.

82. Baum E, Randall AZ, Zeller M, Barbour AG. Inferring epitopes of a polymorphic antigen amidst broadly cross-reactive antibodies using protein microarrays: a study of OspC proteins of Borrelia burgdorferi. PLoS One. 2013;8(6):e67445. doi: 10.1371/journal.pone.0067445. PubMed PMID: 23826301; PMCID: PMC3691210.