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ABSTRACT
The science of extracellular vesicles (EVs) is a rapidly growing field that spans multiple aspects of 
normal physiology and pathophysiology. EVs play a critical role in most basic biological processes 
of cell-cell communications under normal conditions and in disease. EVs have “gone viral” not 
only in terms of research popularity, but also in our realization that they exhibit an elaborate 
crosstalk with viruses, particularly with the enveloped ones, which are also extracellular vesicles 
that are released by cells as a part of their virulence cycle yet are replicative. Here, we highlight 
some of the complexities underlying EV-virus crosstalk and pathways and provide our insights on 
key challenges from the viewpoint of EV biology.
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INTRODUCTION
Among various particles that are generated and released by cells in our body, 2 major types that 
have been thoroughly studied are extracellular vesicles (EVs) and viruses. While the importance 
of viruses, defined in Oxford Reference as “a minute particle that is capable of replication but only 
within living cells,” has been recognized for about 130 years [1], the relevance and impact of EVs, 
defined as the “lipid bilayer membrane-delimited, nano- to micro-sized particles that appear to be 
released by all cell types” [2], has been elucidated only relatively recently. EVs are now considered 
a central means of physiological or pathological communication among cells and organs within  
multicellular organisms, and even between organisms, such as maternal-fetal EV trafficking 
during pregnancy, passage in breastmilk lactation, host-microbiome EV interaction, and trafficking 
among plants and parasites [3–6].

The 3 best characterized EV types are (1) small EVs (exosomes) of approximately 30-150 nm in 
diameter that are formed as intraluminal vesicles within the cell’s multivesicular bodies (MVB) and 
released to the extracellular space when the MVB fuses with the cell membrane; (2) membrane 
particles (ectosomes, microvesicles) of approximately 50-500 nm in diameter that are released by 
pinching off from plasma membranes; and (3) apoptotic bodies of the micron size, formed in the 
course of apoptotic cell disintegration. Although important, the latter are outside the scope of our 
current essay.

Mechanisms underlying the cargo loading, production, intracellular mobilization, release, and  
uptake are shared between EVs and many enveloped viruses. Both generally contain similar molecules, 
proteins, lipids, and nucleic acids, and both are targeted to particular cells and can affect their 
physiology. The ancient origin of EVs and viruses, which likely developed early in evolution as 
they are found in bacteria, plants, and algae, suggests that one is probably a descendent of the 
other, where viruses might have evolved from EVs, gaining the ability to replicate. Whereas 
divergent evolutionary trajectories cannot be excluded, the coexistence of EVs and viruses across 
hundreds of thousands of evolution years might have led multicellular organisms to usurp EVs 
as part of antiviral defense strategies and, in turn, led viruses to commandeer EVs to enhance 
their infectivity. Indeed, such reciprocal effects have been documented, surprisingly even for the 
same virus [7].

The field of EV biology has “gone viral” in the past 20 years, both in terms of its rapid spread to 
other domains of biology, biomedical diagnostics, and therapeutics, as well as by virtue of its 
complex interactions with viruses. However, progress in this field has been hampered by our 
limited understanding of basic mechanisms underlying EV function, both under normal conditions 
and in pathophysiological processes. Understanding this crosstalk is crucial for advancing our 
knowledge of EV function. In this short essay, we neither list various effects of EVs on viral infec-
tion, nor reprise recently reviewed assays on EV-related technologies, isolation methods, and EV 
applications to diagnostics or therapeutics [8–11]. Instead, we emphasize the complex basic prob-
lems regarding the interaction of EVs and viruses that must be solved in the field of EV biology in 
order to define the function of EVs as mediators of cell-cell communication in the context of viral 
infection. 
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Figure 1. Major challenges in our understanding of EV-virus interactions, depicting some of the 
complexities and key challenges from the viewpoint of EV biology. The challenges shown on the right 
correspond to those noted in each of the text’s sections. Created with BioRender.com.

EVs AND VIRUSES: FRIENDS OR FOES?
The co-evolution of non-replicative EVs and replicative viruses resulted in intricate relationships 
between those particle types. These relationships are multifaceted, reflecting the diverse ways EVs 
and viruses can interact to either enhance or diminish viral spread. While numerous pathways 
underlying the effect of EVs on viral infection have been reviewed [12–14], this essay focuses on 
several striking examples of EV-virus interactions in order to highlight unmet challenges in  
understanding mechanisms underlying these relationships.

EVs’ Mimicry of Viruses
It is now well established that EVs generated from virus-infected cells carry viral elements (see [12, 13, 
15]). These EVs are functionally similar to defective (noninfectious) viruses. Such EVs are commonly 
generated in quantities that exceed those of infectious virions [16]. Throughout the 20th century, the 
field of virology focused mostly on infectious viruses. The impact of viral components-laden EVs has 
only recently been recognized. For example, the HIV protein Nef, which plays an important role 
in HIV pathogenesis and comorbidities, is carried by EVs [17, 18]. Other infection-promoting HIV 
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components that are carried by EVs include HIV’s cellular coreceptors CCR5 and CXCR4, which 
can increase cellular susceptibility to HIV infection [19]. Similarly, EVs with the viral transactivation 
response element (TAR) RNA promote cell survival and thus augment the release of virions [20, 
21]. In contrast, T cells release EVs that contain the HIV receptor CD4, which acts as a decoy to 
reduce the number of HIV viruses that can infect cells [7]. Hepatitis C virus (HCV)-infected cells 
also release EVs harboring the viral proteins E1 and E2 [22]. Similarly, SARS-CoV-2-infected cells 
release EVs that contain E and M viral membrane proteins [22]. EVs from infected cells may carry 
not only viral proteins but also viral RNA or DNA, and these EVs may shape immune response in 
target cells [23, 24]. Remarkably, even an entire virus (such as HAV or HCV) can be transferred 
into cells, cloaked inside EVs that provide an envelope to non-enveloped virions, and assist them 
to overcome the absence of specific viral receptors [25].

EVs carrying various viral molecules may affect not only the infected cells but also systemic 
immunity. For example, in non-human primates infected with Ebola virus, EVs carry a surface 
glycoprotein that attenuates immune response, in part, by depleting T cells, thus contributing to 
Ebola pathogenesis [16]. Also, Nef-containing EVs from HIV-infected cells, mentioned above, 
may attenuate T-cell response, thus reducing antiviral reactions [17]. In contrast, EVs released 
before viral spread can heighten antiviral cytokine responses by alerting the immune system via 
Toll-like receptor pathways [26–28]. 

EVs May Affect Both Cells and Virions 
EVs impacting viral infections can originate not only from infected cells but also from bystander 
cells and even bacteria. Bioactive EVs that carry viral elements are likely generated in many, if 
not all, viral infections. These EVs can affect target cells, including their susceptibility to viruses. 
However, we have limited mechanistic understanding of these phenomena, with only a few well-char-
acterized examples. EVs with exposed phosphatidylserine (PS) occupy the target cell’s membrane 
PS receptors and thereby decrease cell infectivity by Zika, West Nile, Chikungunya, and Ebola 
viruses, which use the PS receptor to infect cells [29, 30]. EVs can diminish viral replication in 
other cells by delivering specific miRNA [31, 32]. Interestingly, bacteria may also release EVs 
that shape target cell infectivity. For example, lactobacilli-generated EVs bind to HIV gp120 and 
decrease viral ability to bind to the host cell receptor [33]. In contrast, some EVs derived from 
Porphyromonas gingivalis bind to HIV to transfer the virus into nonpermissive cells where infection 
is established [5]. 

EVs “GOING VIRAL” – CENTRAL CHALLENGES
Defining the key determinants that shape the interaction of EVs with viruses, whether cooperative 
or antagonistic, requires deeper understanding of EV biology. We must also ensure that EV-probing 
technologies do not create technical artifacts that are irrelevant to EV-virus crosstalk. In the section 
below, we define key investigative issues and their implications, all from the viewpoint of EV biology, 
and formulate a set of unmet challenges.
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EVs: Not Well Defined, Not Well Isolated
Despite their diversity, EVs remain poorly characterized compared to viruses. Methods for  
isolating EVs based on size and composition, as is done for viruses, are lacking. Currently the most 
popular techniques for EV isolation are ultracentrifugation and iodixanol (OptiPrep) gradient 
separation or size-exclusion chromatography. Ultracentrifugation isolates EVs of similar density, 
while size-exclusion chromatography isolates EVs of similar size irrespective of their biogenesis or 
chemical composition. However, both techniques ignore EV diversity, defined by other parameters. 
Immunoaffinity-based methods are another approach for isolating EVs (reviewed in [34]).  
Although initially it was more laborious and applied only to small quantities of EVs, high 
throughput immunoaffinity techniques are being developed [35]. Notably, immunoaffinity-based 
isolation methods target particular fractions of EVs on the basis of their specific antigens, which 
may be a limitation when the goal is to collect all EVs. Other currently developed methods, like 
asymmetric flow field-flow fractionation, also have limitations but are greatly needed to fully 
define the landscape of EV diversity [36–38].

Many published claims regarding EV purity are limited by inadequate analytical specificity and 
imperfect measurements. For example, EV size measurement often relies on the questionable  
assumption of a spherical EV structure, which is strongly influenced by the measurement technique. 
Nanoparticle tracking analysis and cryo-transmission electron microscopy provide different size 
distributions, varying not only in the range of EVs analyzed but also in the relative proportion of 
smaller to larger EVs [39]. Particle size estimation based on fluorescent probes depends on membrane- 
intercalating dyes, skewing results due to dye interaction with tissue-specific membrane lipid 
types. Even emerging single-vesicle technologies [40] may not accurately capture the full range of 
EV sizes. These factors may lead to an overestimation of EV size variability [41, 42]. 

The variability of EV lipid composition remains a challenge. Even approximate calculations suggest a 
vast number of possible EV lipid compositions. This number may exceed the total number of cells 
in a human body, which is on the order of 1013 [43]. Although the actual number may be lower 
due to limitations on phospholipid combinations and vesicle formation, the potential diversity 
of EVs remains vast. Moreover, current data suggest that the cell-specific EV-to-cell ratio spans 
4 orders of magnitude, from 0.13 ± 0.1 erythrocyte-derived EVs/erythrocyte to (1.9 ± 1.3) ×103 
monocyte-derived EVs/monocyte [44]. Therefore, despite the EV potential diversity, it seems that 
different EVs may have a similar bioactivity, consistent with the commonly observed redundancy 
in most biological systems. 
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Key Unmet Challenges in EV Characterization 

1. 	 A major challenge in EV research is the lack of reliable markers to distinguish EVs 
of similar size. While viruses are often readily distinguishable, even after release, we 
lack reliable markers for EVs, particularly those in the 100–200 nm size range [45]. 
This lack of specific markers hinders our ability to separate EVs on the basis of their 
biogenesis pathways. Consequently, despite the likelihood that EVs from different 
origins play distinct roles in viral interactions and cell communication, many studies 
still rely on pooled EV fractions. This inability to separate EVs of similar physical 
characteristics but different biogenesis pathways is an important obstacle in studies 
on EV-virus interactions [46].

2. 	 The dimensionality of communicating particles has been recently expanded by the 
discovery of non-vesicular extracellular particles (NVEPs), which in addition to the 
well-characterized lipoproteins, include exomeres, supermeres, and vaults. These 
NVEPs, which lack a lipid bilayer membrane, are present and often plentiful in the  
extracellular space and bodily fluids. Like EVs, they may participate in complex  
patterns of intercellular communications [2, 47, 48]. The overlapping size of many 
EVs and NVEPs make it difficult to separate them [47]. Moreover, EVs may physically 
interact with NVEP elements [49] to regulate their targeting and biological function, 
creating a poorly understood communication with target cells. These particles carry  
multidimensional information (molecular “voxels”) that can be integrated into a 
larger, unbiased landscape (EV/EP “hologram”) [50]. While individual effects of these 
particles, such as modulating target cell metabolism [51], are beginning to unfold, 
their interaction with viruses (or with other EV types) requires further research. 

3. 	 EVs are an essential part of microbiome bacteria communication with the host cells. 
Considering the importance of the microbiome for our physiology, further studies are 
needed to reveal the role of microbiome-generated EVs in viral infection. 

Purified EVs – Are They the EVs We Sought?
A key challenge in EV research is ensuring the purity of EV isolates. Knowledge about EV function is 
commonly based on in vitro experiments in which isolated EVs are incubated with different cellular 
and tissue cultures. To ensure physiological relevance, isolated EVs should accurately represent those 
found in vivo. Thus, assuring that EV isolation techniques do not result in technical artifacts that are 
irrelevant to EV-virus crosstalk becomes paramount. However, lipoproteins, like low-density 
lipoproteins (LDL), can co-isolate with EVs due to their similar size and density, and may even 
form complexes with EVs [49]. Consequently, some observed EV characteristics may actually be 
attributed to lipoproteins. Recently, methods have been developed to separate EVs from LDL [52, 
53], and they should be included in EV isolation protocols. Further, some EVs contain enzymes 
[54, 55] that may modify the EV cargo over time. Thus, inferring from in vitro studies to physio-
logically relevant in vivo systems requires additional validation.
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EVs, like other colloidal particles, can acquire a corona (crown), a halo of adsorbed molecules on 
their surface. The concept of an EV corona of attached proteins was recently introduced by Buzas 
et al [56]. As EVs circulate in protein-rich biofluids, they also acquire coronas. Importantly, various 
proteins that form coronas and that might be critical for EV function are attached to the EV sur-
face with variable affinity. Some corona proteins bind tightly to EVs and resist removal, even with 
rigorous purification [56, 57], while others are loosely associated and readily lost during isolation. 
Yet, these proteins may define some EV functions. For example, these corona proteins may enter 
target cells even without internalization of their host vesicles or may signal through cell surface 
receptors [57]. 

Several technologies have been proposed to elucidate the role of corona components, including 
gentle digestion of surface components, permeabilizations, physical disruption of the corona, or 
reconstruction of the coronas with specific properties [58]. The presence of many of these proteins 
in the common medium bathing various EVs may lead to apparent EV redundancy, masking 
some of the EV heterogenicity discussed above. Thus, direct studies of corona structure and function 
are critical for full understanding of EV-mediated signaling.

 
Key Unmet Challenges in EV Purification

1.	 Isolating pure EVs is crucial for EV research. Most EV isolation methods that separate 
EV fractions by size or density may contain viral particles. Although progress has been 
made in developing purer EV preparations [59], this remains a challenge, particularly 
for retroviruses, which share similar size, density, and other biophysical properties 
with many EV subtypes [15]. Reliable techniques to isolate “pure” EVs need to be 
developed.

2.	 EVs generated by retrovirus-infected cells commonly carry viral proteins or even 
fragments of the viral genomes. These EVs can be classified as noninfectious viruses or 
viral particles. They interact with cells, triggering responses similar to those induced 
by enveloped viruses. This similarity adds complexity to functional studies, which 
must account for these EV-mediated effects. 

3.	 Both EVs and viral particles harbor a corona [60]. Interactions between EV and viral 
coronas may influence their crosstalk. Consequently, loss of the corona during EV 
isolation and purification may render studies on EV-virion interactions less reflective 
of their functional interaction in vivo, as the corona may mediate or modulate these 
interactions.

The Intricacies of EV Trafficking and Signaling
For multicellular organisms to function properly, coordinated communication between cells, tissues, 
and organs is essential. Such interaction pathways include direct membrane-contact interactions 
or cytoplasmic bridges between adjacent cells, released signaling molecules (eg, proteins, lipids, 
hormones, cytokines), and communication via EVs. Each type of communication has its own 
advantages and limitations. What are the advantages of EVs in this role?
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EVs are a key component of the language cells use to communicate [61, 62]. Akin to human 
languages, where the first few words in a sentence suggest what the full sentence implies, discrete 
EV molecular cues may reveal the full composition of each EV. For example, EV envelope  
composition may disclose the general type of cargo molecules even prior to intracellular endocytic 
processing and activate particular intracellular pathways for cargo processing even prior to EV 
entry into cell cytoplasm [63, 64]. Packaging of communication signals likely protects the EV 
cargo against degradation in the plasma or other extracellular fluids. Discrete molecules on the 
EV surface may serve as a QR code that provides precise targeting in highly complex systems. 
Packaging multiple cargo components within a single EV may provide synergistic benefits. 
Lastly, EVs may also participate in homeostatic feedback mechanisms, responding to cues from 
hormones, growth factors, metabolites, or even to signals from other circulating EVs and may 
affect the biology of nearby or distant tissues.

Messaging through EVs requires complex signal processing in recipient cells, more so than 
processing single molecules. EVs interact with recipient cells through binding at the cell surface, 
signaling to cell-surface receptors by the EV surface molecules, cytoplasmic EV uptake or endo-
cytosis, and trafficking of EV components into diverse intracellular compartments, with cargo 
shuttling and processing in the proper organelles [61, 64–69]. A key hurdle in investigating the 
mechanisms of these processes is the need for multiple different techniques to capture these 
multi-stage processes. To fully understand these processes, innovative approaches to block specific 
intracellular components are critically needed to establish discrete pathways.

 Understanding the biological meaning of EV diversity in cell communication requires addressing 
several unresolved questions related to EV biogenesis, release from cells, and transfer to target 
cells. Deciphering the full intricacies of EV biogenesis is challenging [61, 70, 71], although the 
formation of intraluminal vesicles through the action of endosomal sorting complexes required 
for transport (ESCRT), syntenin-ALIX, tetraspanins, or other cytoskeleton machineries within 
microdomains may be similar for multivesicular endosomes and the cell membrane [61]. Such 
resemblance hinders understanding of the unique aspects of biogenesis of diverse EVs and makes 
the probing of individual components more complex. Similarly, cellular pathways underlying the 
formation of intracellular endosomes and EVs overlap. What determines the fate of a vesicle or 
a multivesicular endosome to become an endocytic actor, to be shuttled to lysosomes, or to be a 
released, secretory vesicle? Another intriguing concept is the role of selective cargo in modulating 
EV biogenesis pathways [72]. Do key determinants include the type of cargo (membrane-bound 
or not) or the cargo’s biochemical composition? Are there also subpopulations of multivesicular 
endosomes, and how do they interact with other cellular organelles? What is the impact of the cell 
membrane location in polarized cells on EV release [73]?

Several variables influence EV trafficking in the circulation. The release of EVs from the apical or 
basolateral surface of polarized cells is asymmetrical, and largely dependent on different machineries 
[73–78]. It is currently unknown whether the release from the apical or basolateral surfaces of polarized 
cells affects EV dynamics and interaction with viruses in extracellular space. Similarly, the effect of 
glycocalyx and other extracellular matrices on EV movement in the extracellular space, and the role 
of EVs’ biophysical properties in determining EV release and trafficking require further investigation. 
While EVs can be found in any biological fluid, what determines their half-life in that fluid? Further, 
EVs are known to cross bodily barriers, such as the blood capillary endothelial cells, lymphatic cells, 
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or the blood-brain barrier [79], but the mechanisms underlying these processes and their effect on EV 
function remain to be uncovered [72].

Despite our knowledge of several endocytic pathways mediating EV uptake, many aspects of cell 
targeting and the intercellular processing of EV cargo signals are unclear and may be cell-type 
specific [80]. Are different EV subtypes processed differently? Does the EV corona (see above) play 
a role in directing EVs to target cells? Once an EV is expected to be inside a cell, it is commonly 
assumed that any effect on target tissue or cells in vivo or in vitro can be attributed to EV cargoes. 
Yet, the internalized EVs in target cells maybe targeted for degradation in lysosomes. What guides 
the endosomal escape of EV cargo prior to degradation in lysosomes within target cells? In this 
regard, an overlooked aspect is the relative advantage of EVs compared to other communication 
means, such as cell-cell contact, nanotubes or soluble factors like cytokines, or extracellular RNA.

 
Key Unmet Challenges in Mapping EV Trafficking

1.	 Both EVs and viruses utilize the ESCRT system for their formation. However, these 
biogenesis pathways, which are likely essential to defining EV biology, are not currently 
used to differentiate EV subtypes. A better understanding of EV formation and cargo  
loading during biogenesis will improve our understanding of EV-virus crosstalk. 
While some EVs passively reflect cytoplasmic content, others actively sort molecules, 
such as RNA, into their cargo [81, 82]. More insights into EV biogenesis are needed to 
shed light on the EV-virus interaction.

2.	 A key hurdle in investigating the mechanisms of EV membrane binding and endocytosis is 
the need for several different techniques to capture these multi-stage processes. To  
establish discrete pathways, innovative approaches are needed to block specific  
intracellular components. Understanding these mechanisms is crucial for developing 
targeted interventions.

3.	 EVs, like many viruses, can enter target cells through various mechanisms, including 
fusion and endocytosis. The role of membrane binding and endosomal processing in 
determining the interaction of EVs and viruses in target cells remains poorly understood. 
Is endosomal escape by viruses affected by the presence of EV surface proteins and cargo? 
Does such interaction functionally influence target cell pathogen recognition receptors 
and other cellular antiviral response pathways? How are viral genomic elements, 
carried by EVs, processed inside the target cells, and how do they change cell 
physiology?

CONCLUSIONS
Addressing the main challenges discussed in our perspective has direct implications for clinical 
medicine. Our grasp of disease pathogenesis will be markedly improved by better insights into 
EV trafficking. A key example is the role of EVs in carcinogenesis and the metastatic spread of 
a primary tumor, where trafficking of tumor-derived EVs may play a major role in shaping the 
tumor microenvironment and the formation of distant pre-metastatic niches (reviewed in [83]). 
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Additionally, improved EV isolation technology may allow the identification of virus-containing EVs, 
which will serve both diagnostic and therapeutic targeting of virion-containing EVs. Furthermore, 
the effect of EVs on the immune system may bolster research into their use in modulating antiviral 
immune responses and other pathways underlying viral resistance [84]. These advancements  
necessitate better technologies for EV characterization and standardization of quality and reporting, 
which are essential for improved diagnostics, disease prediction, and prognostics [2, 47]. This also 
includes the characterization of NVEPs, such as supermeres, where analysis of their cargo mole-
cules suggests a role for these particles in common diseases like Alzheimer’s, cancer, and cardio-
vascular disorders [51]. Further, as the EV corona harbors not only proteins but also lipoproteins 
and nucleic acids, it may play a critical role in EV distribution and the targeting of engineered EVs 
for therapeutic purposes [85, 86]. It may also affect the ability of EVs to cross barriers like the blood-
brain barrier. Therapeutically, these parameters are particularly important when Good Manufacturing 
Practices guidelines must be met to ensure quality and safety before introduction into clinical care. 

Given the burgeoning field of EV research, the key roles of EVs in communication among cells and 
organs in health and disease, in particular the infectious ones, are gradually being elucidated. However, 
understanding specific effects of EVs in viral infection remains hampered by the complexity of the 
EV landscape in terms of their structure, size, density, formation, cargo molecules, loading pathways, 
mechanism of uptake, cargo sorting in target cells, and biological function [87]. To further our under-
standing of the complex role of EVs in cell-cell communications under normal conditions and in viral 
infection, we need to find reliable markers that distinguish EVs on the basis of their release pathways, 
under standard laboratory conditions that faithfully capture processes that occur in vivo. Specific 
mechanisms, such as the loading of EV cargoes and the integration of membrane proteins into EVs, in 
particular into the virally encoded ones, warrant investigation. We need to investigate the mechanisms 
of EVs’ interactions with viruses and whether these occur both inside and outside the cells and define 
the role of the various EV coronas in EV bioactivity and in their interaction with viruses. 

To address these issues, a systems EV biology, rooted in statistical and computational methods, 
might be needed to provide holistic insights into the complex interactions among cell of origin, 
assorted vesicular messages, and recipient targets. Realizing these complexities forces us to re-
think EV types, their redundancy, communication language, and intriguingly, EV homology to 
viruses and their crosstalk. Understanding how this general system is organized may require the 
involvement of virology, cell biology, and broad expertise in systems biology, bioinformatics, even 
in structural linguistics, as EVs constitute a language by which cells communicate to each other 
[61, 62]. Such interdisciplinary collaboration may constitute the next frontier of EV science.
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