PATHOGENS AND IMMUNITY - VOL 10, NO 1 140

COMMENTARY
Published February 14, 2025

WHEN EXTRACELLULAR VESICLES
GO VIRAL: A BIrRD’S EYE VIEW

AUTHORS
Leonid B. Margolis' and Yoel Sadovsky*

AFFILIATED INSTITUTIONS

'Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
*Magee-Womens Research Institute, Department of OBGYN and Reproductive Sciences,
Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania

CORRESPONDING AUTHOR DOI
Leonid B. Margolis 10.20411/pai.v10i1.787
leonidborisovichmargolis@gmail.com

SUGGESTED CITATION
Margolis LB, Sadovsky Y. When Extracellular Vesicles Go Viral: A Bird’s Eye View. Pathogens and
Immunity. 2025;10(1):140-158. doi: 10.20411/pai.v10i1.787

ABSTRACT

The science of extracellular vesicles (EVs) is a rapidly growing field that spans multiple aspects of
normal physiology and pathophysiology. EV's play a critical role in most basic biological processes
of cell-cell communications under normal conditions and in disease. EVs have “gone viral” not
only in terms of research popularity, but also in our realization that they exhibit an elaborate
crosstalk with viruses, particularly with the enveloped ones, which are also extracellular vesicles
that are released by cells as a part of their virulence cycle yet are replicative. Here, we highlight
some of the complexities underlying EV-virus crosstalk and pathways and provide our insights on
key challenges from the viewpoint of EV biology.
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INTRODUCTION

Among various particles that are generated and released by cells in our body, 2 major types that
have been thoroughly studied are extracellular vesicles (EVs) and viruses. While the importance
of viruses, defined in Oxford Reference as “a minute particle that is capable of replication but only
within living cells,” has been recognized for about 130 years [1], the relevance and impact of EVs,
defined as the “lipid bilayer membrane-delimited, nano- to micro-sized particles that appear to be
released by all cell types” [2], has been elucidated only relatively recently. EV's are now considered
a central means of physiological or pathological communication among cells and organs within
multicellular organisms, and even between organisms, such as maternal-fetal EV trafficking
during pregnancy, passage in breastmilk lactation, host-microbiome EV interaction, and trafficking
among plants and parasites [3-6].

The 3 best characterized EV types are (1) small EV's (exosomes) of approximately 30-150 nm in
diameter that are formed as intraluminal vesicles within the cell’s multivesicular bodies (MVB) and
released to the extracellular space when the MVB fuses with the cell membrane; (2) membrane
particles (ectosomes, microvesicles) of approximately 50-500 nm in diameter that are released by
pinching off from plasma membranes; and (3) apoptotic bodies of the micron size, formed in the
course of apoptotic cell disintegration. Although important, the latter are outside the scope of our
current essay.

Mechanisms underlying the cargo loading, production, intracellular mobilization, release, and

uptake are shared between EV's and many enveloped viruses. Both generally contain similar molecules,
proteins, lipids, and nucleic acids, and both are targeted to particular cells and can affect their
physiology. The ancient origin of EVs and viruses, which likely developed early in evolution as
they are found in bacteria, plants, and algae, suggests that one is probably a descendent of the
other, where viruses might have evolved from EVs, gaining the ability to replicate. Whereas
divergent evolutionary trajectories cannot be excluded, the coexistence of EVs and viruses across
hundreds of thousands of evolution years might have led multicellular organisms to usurp EV's
as part of antiviral defense strategies and, in turn, led viruses to commandeer EV's to enhance
their infectivity. Indeed, such reciprocal effects have been documented, surprisingly even for the
same virus [7].

The field of EV biology has “gone viral” in the past 20 years, both in terms of its rapid spread to
other domains of biology, biomedical diagnostics, and therapeutics, as well as by virtue of its
complex interactions with viruses. However, progress in this field has been hampered by our
limited understanding of basic mechanisms underlying EV function, both under normal conditions
and in pathophysiological processes. Understanding this crosstalk is crucial for advancing our
knowledge of EV function. In this short essay, we neither list various effects of EVs on viral infec-
tion, nor reprise recently reviewed assays on EV-related technologies, isolation methods, and EV
applications to diagnostics or therapeutics [8-11]. Instead, we emphasize the complex basic prob-
lems regarding the interaction of EVs and viruses that must be solved in the field of EV biology in
order to define the function of EVs as mediators of cell-cell communication in the context of viral
infection.
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Figure 1. Major challenges in our understanding of EV-virus interactions, depicting some of the

complexities and key challenges from the viewpoint of EV biology. The challenges shown on the right
correspond to those noted in each of the text’s sections. Created with BioRender.com.

EVs AND VIRUSES: FRIENDS OR FOES?

The co-evolution of non-replicative EVs and replicative viruses resulted in intricate relationships
between those particle types. These relationships are multifaceted, reflecting the diverse ways EV's
and viruses can interact to either enhance or diminish viral spread. While numerous pathways
underlying the effect of EV's on viral infection have been reviewed [12-14], this essay focuses on
several striking examples of EV-virus interactions in order to highlight unmet challenges in
understanding mechanisms underlying these relationships.

EVs’ Mimicry of Viruses

It is now well established that EV's generated from virus-infected cells carry viral elements (see [12, 13,
15]). These EVs are functionally similar to defective (noninfectious) viruses. Such EVs are commonly
generated in quantities that exceed those of infectious virions [16]. Throughout the 20th century, the
field of virology focused mostly on infectious viruses. The impact of viral components-laden EV's has
only recently been recognized. For example, the HIV protein Nef, which plays an important role
in HIV pathogenesis and comorbidities, is carried by EVs [17, 18]. Other infection-promoting HIV
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components that are carried by EVs include HIV’s cellular coreceptors CCR5 and CXCR4, which
can increase cellular susceptibility to HIV infection [19]. Similarly, EV's with the viral transactivation
response element (TAR) RNA promote cell survival and thus augment the release of virions [20,
21]. In contrast, T cells release EVs that contain the HIV receptor CD4, which acts as a decoy to
reduce the number of HIV viruses that can infect cells [7]. Hepatitis C virus (HCV)-infected cells
also release EVs harboring the viral proteins E1 and E2 [22]. Similarly, SARS-CoV-2-infected cells
release EVs that contain E and M viral membrane proteins [22]. EVs from infected cells may carry
not only viral proteins but also viral RNA or DNA, and these EVs may shape immune response in
target cells [23, 24]. Remarkably, even an entire virus (such as HAV or HCV) can be transferred
into cells, cloaked inside EVs that provide an envelope to non-enveloped virions, and assist them
to overcome the absence of specific viral receptors [25].

EVs carrying various viral molecules may affect not only the infected cells but also systemic
immunity. For example, in non-human primates infected with Ebola virus, EVs carry a surface
glycoprotein that attenuates immune response, in part, by depleting T cells, thus contributing to
Ebola pathogenesis [16]. Also, Nef-containing EV's from HIV-infected cells, mentioned above,
may attenuate T-cell response, thus reducing antiviral reactions [17]. In contrast, EVs released
before viral spread can heighten antiviral cytokine responses by alerting the immune system via
Toll-like receptor pathways [26-28].

EVs May Affect Both Cells and Virions

EVs impacting viral infections can originate not only from infected cells but also from bystander
cells and even bacteria. Bioactive EV's that carry viral elements are likely generated in many, if
not all, viral infections. These EV's can affect target cells, including their susceptibility to viruses.
However, we have limited mechanistic understanding of these phenomena, with only a few well-char-
acterized examples. EVs with exposed phosphatidylserine (PS) occupy the target cell's membrane
PS receptors and thereby decrease cell infectivity by Zika, West Nile, Chikungunya, and Ebola
viruses, which use the PS receptor to infect cells [29, 30]. EVs can diminish viral replication in
other cells by delivering specific miRNA [31, 32]. Interestingly, bacteria may also release EV's
that shape target cell infectivity. For example, lactobacilli-generated EVs bind to HIV gp120 and
decrease viral ability to bind to the host cell receptor [33]. In contrast, some EVs derived from
Porphyromonas gingivalis bind to HIV to transfer the virus into nonpermissive cells where infection
is established [5].

EVs “GOING VIRAL” - CENTRAL CHALLENGES

Defining the key determinants that shape the interaction of EVs with viruses, whether cooperative
or antagonistic, requires deeper understanding of EV biology. We must also ensure that EV-probing
technologies do not create technical artifacts that are irrelevant to EV-virus crosstalk. In the section
below, we define key investigative issues and their implications, all from the viewpoint of EV biology,
and formulate a set of unmet challenges.
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EVs: Not Well Defined, Not Well Isolated

Despite their diversity, EVs remain poorly characterized compared to viruses. Methods for
isolating EV's based on size and composition, as is done for viruses, are lacking. Currently the most
popular techniques for EV isolation are ultracentrifugation and iodixanol (OptiPrep) gradient
separation or size-exclusion chromatography. Ultracentrifugation isolates EVs of similar density,
while size-exclusion chromatography isolates EV's of similar size irrespective of their biogenesis or
chemical composition. However, both techniques ignore EV diversity, defined by other parameters.
Immunoaffinity-based methods are another approach for isolating EV's (reviewed in [34]).
Although initially it was more laborious and applied only to small quantities of EVs, high
throughput immunoaffinity techniques are being developed [35]. Notably, immunoaffinity-based
isolation methods target particular fractions of EVs on the basis of their specific antigens, which
may be a limitation when the goal is to collect all EVs. Other currently developed methods, like
asymmetric flow field-flow fractionation, also have limitations but are greatly needed to fully
define the landscape of EV diversity [36-38].

Many published claims regarding EV purity are limited by inadequate analytical specificity and
imperfect measurements. For example, EV size measurement often relies on the questionable
assumption of a spherical EV structure, which is strongly influenced by the measurement technique.
Nanoparticle tracking analysis and cryo-transmission electron microscopy provide different size
distributions, varying not only in the range of EVs analyzed but also in the relative proportion of
smaller to larger EV's [39]. Particle size estimation based on fluorescent probes depends on membrane-
intercalating dyes, skewing results due to dye interaction with tissue-specific membrane lipid
types. Even emerging single-vesicle technologies [40] may not accurately capture the full range of
EV sizes. These factors may lead to an overestimation of EV size variability [41, 42].

The variability of EV lipid composition remains a challenge. Even approximate calculations suggest a
vast number of possible EV lipid compositions. This number may exceed the total number of cells
in a human body, which is on the order of 10" [43]. Although the actual number may be lower
due to limitations on phospholipid combinations and vesicle formation, the potential diversity

of EVs remains vast. Moreover, current data suggest that the cell-specific EV-to-cell ratio spans

4 orders of magnitude, from 0.13 + 0.1 erythrocyte-derived EVs/erythrocyte to (1.9 £ 1.3) x10°
monocyte-derived EVs/monocyte [44]. Therefore, despite the EV potential diversity, it seems that
different EVs may have a similar bioactivity, consistent with the commonly observed redundancy
in most biological systems.
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Key Unmet Challenges in EV Characterization

1. A major challenge in EV research is the lack of reliable markers to distinguish EV's
of similar size. While viruses are often readily distinguishable, even after release, we
lack reliable markers for EVs, particularly those in the 100-200 nm size range [45].
This lack of specific markers hinders our ability to separate EVs on the basis of their
biogenesis pathways. Consequently, despite the likelihood that EVs from different
origins play distinct roles in viral interactions and cell communication, many studies
still rely on pooled EV fractions. This inability to separate EVs of similar physical
characteristics but different biogenesis pathways is an important obstacle in studies
on EV-virus interactions [46].

2. 'The dimensionality of communicating particles has been recently expanded by the
discovery of non-vesicular extracellular particles (NVEPs), which in addition to the
well-characterized lipoproteins, include exomeres, supermeres, and vaults. These
NVEPs, which lack a lipid bilayer membrane, are present and often plentiful in the
extracellular space and bodily fluids. Like EVs, they may participate in complex
patterns of intercellular communications [2, 47, 48]. The overlapping size of many
EVs and NVEPs make it difficult to separate them [47]. Moreover, EVs may physically
interact with NVEP elements [49] to regulate their targeting and biological function,
creating a poorly understood communication with target cells. These particles carry
multidimensional information (molecular “voxels”) that can be integrated into a
larger, unbiased landscape (EV/EP “hologram”) [50]. While individual effects of these
particles, such as modulating target cell metabolism [51], are beginning to unfold,
their interaction with viruses (or with other EV types) requires further research.

3. EVsare an essential part of microbiome bacteria communication with the host cells.
Considering the importance of the microbiome for our physiology, further studies are
needed to reveal the role of microbiome-generated EVs in viral infection.

Purified EVs - Are They the EVs We Sought?

A key challenge in EV research is ensuring the purity of EV isolates. Knowledge about EV function is
commonly based on in vitro experiments in which isolated EVs are incubated with different cellular
and tissue cultures. To ensure physiological relevance, isolated EV's should accurately represent those
found in vivo. Thus, assuring that EV isolation techniques do not result in technical artifacts that are
irrelevant to EV-virus crosstalk becomes paramount. However, lipoproteins, like low-density
lipoproteins (LDL), can co-isolate with EVs due to their similar size and density, and may even
form complexes with EVs [49]. Consequently, some observed EV characteristics may actually be
attributed to lipoproteins. Recently, methods have been developed to separate EV's from LDL [52,
53], and they should be included in EV isolation protocols. Further, some EVs contain enzymes
[54, 55] that may modify the EV cargo over time. Thus, inferring from in vitro studies to physio-
logically relevant in vivo systems requires additional validation.
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EVs, like other colloidal particles, can acquire a corona (crown), a halo of adsorbed molecules on
their surface. The concept of an EV corona of attached proteins was recently introduced by Buzas

et al [56]. As EVs circulate in protein-rich biofluids, they also acquire coronas. Importantly, various
proteins that form coronas and that might be critical for EV function are attached to the EV sur-
face with variable affinity. Some corona proteins bind tightly to EVs and resist removal, even with
rigorous purification [56, 57], while others are loosely associated and readily lost during isolation.
Yet, these proteins may define some EV functions. For example, these corona proteins may enter
target cells even without internalization of their host vesicles or may signal through cell surface
receptors [57].

Several technologies have been proposed to elucidate the role of corona components, including
gentle digestion of surface components, permeabilizations, physical disruption of the corona, or
reconstruction of the coronas with specific properties [58]. The presence of many of these proteins
in the common medium bathing various EVs may lead to apparent EV redundancy, masking
some of the EV heterogenicity discussed above. Thus, direct studies of corona structure and function
are critical for full understanding of EV-mediated signaling.

Key Unmet Challenges in EV Purification

1. Isolating pure EVs is crucial for EV research. Most EV isolation methods that separate
EV fractions by size or density may contain viral particles. Although progress has been
made in developing purer EV preparations [59], this remains a challenge, particularly
for retroviruses, which share similar size, density, and other biophysical properties
with many EV subtypes [15]. Reliable techniques to isolate “pure” EVs need to be
developed.

2. EVs generated by retrovirus-infected cells commonly carry viral proteins or even
fragments of the viral genomes. These EV's can be classified as noninfectious viruses or
viral particles. They interact with cells, triggering responses similar to those induced
by enveloped viruses. This similarity adds complexity to functional studies, which
must account for these EV-mediated effects.

3. Both EVs and viral particles harbor a corona [60]. Interactions between EV and viral
coronas may influence their crosstalk. Consequently, loss of the corona during EV
isolation and purification may render studies on EV-virion interactions less reflective
of their functional interaction in vivo, as the corona may mediate or modulate these
interactions.

The Intricacies of EV Trafficking and Signaling

For multicellular organisms to function properly, coordinated communication between cells, tissues,
and organs is essential. Such interaction pathways include direct membrane-contact interactions

or cytoplasmic bridges between adjacent cells, released signaling molecules (eg, proteins, lipids,
hormones, cytokines), and communication via EVs. Each type of communication has its own
advantages and limitations. What are the advantages of EVs in this role?

WWW.PAIJOURNAL.COM


http://www.PaiJournal.com

PATHOGENS AND IMMUNITY - VOL 10, NO 1 147

EVs are a key component of the language cells use to communicate [61, 62]. Akin to human
languages, where the first few words in a sentence suggest what the full sentence implies, discrete
EV molecular cues may reveal the full composition of each EV. For example, EV envelope
composition may disclose the general type of cargo molecules even prior to intracellular endocytic
processing and activate particular intracellular pathways for cargo processing even prior to EV
entry into cell cytoplasm [63, 64]. Packaging of communication signals likely protects the EV
cargo against degradation in the plasma or other extracellular fluids. Discrete molecules on the
EV surface may serve as a QR code that provides precise targeting in highly complex systems.
Packaging multiple cargo components within a single EV may provide synergistic benefits.
Lastly, EVs may also participate in homeostatic feedback mechanisms, responding to cues from
hormones, growth factors, metabolites, or even to signals from other circulating EVs and may
affect the biology of nearby or distant tissues.

Messaging through EV's requires complex signal processing in recipient cells, more so than
processing single molecules. EV's interact with recipient cells through binding at the cell surface,
signaling to cell-surface receptors by the EV surface molecules, cytoplasmic EV uptake or endo-
cytosis, and trafficking of EV components into diverse intracellular compartments, with cargo
shuttling and processing in the proper organelles [61, 64-69]. A key hurdle in investigating the
mechanisms of these processes is the need for multiple different techniques to capture these
multi-stage processes. To fully understand these processes, innovative approaches to block specific
intracellular components are critically needed to establish discrete pathways.

Understanding the biological meaning of EV diversity in cell communication requires addressing
several unresolved questions related to EV biogenesis, release from cells, and transfer to target
cells. Deciphering the full intricacies of EV biogenesis is challenging [61, 70, 71], although the
formation of intraluminal vesicles through the action of endosomal sorting complexes required
for transport (ESCRT), syntenin-ALIX, tetraspanins, or other cytoskeleton machineries within
microdomains may be similar for multivesicular endosomes and the cell membrane [61]. Such
resemblance hinders understanding of the unique aspects of biogenesis of diverse EVs and makes
the probing of individual components more complex. Similarly, cellular pathways underlying the
formation of intracellular endosomes and EVs overlap. What determines the fate of a vesicle or
a multivesicular endosome to become an endocytic actor, to be shuttled to lysosomes, or to be a
released, secretory vesicle? Another intriguing concept is the role of selective cargo in modulating
EV biogenesis pathways [72]. Do key determinants include the type of cargo (membrane-bound
or not) or the cargos biochemical composition? Are there also subpopulations of multivesicular
endosomes, and how do they interact with other cellular organelles? What is the impact of the cell
membrane location in polarized cells on EV release [73]?

Several variables influence EV trafficking in the circulation. The release of EVs from the apical or
basolateral surface of polarized cells is asymmetrical, and largely dependent on different machineries
[73-78]. It is currently unknown whether the release from the apical or basolateral surfaces of polarized
cells affects EV dynamics and interaction with viruses in extracellular space. Similarly, the effect of
glycocalyx and other extracellular matrices on EV movement in the extracellular space, and the role
of EVs biophysical properties in determining EV release and trafficking require further investigation.
While EVs can be found in any biological fluid, what determines their half-life in that fluid? Further,
EVs are known to cross bodily barriers, such as the blood capillary endothelial cells, lymphatic cells,
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or the blood-brain barrier [79], but the mechanisms underlying these processes and their effect on EV
function remain to be uncovered [72].

Despite our knowledge of several endocytic pathways mediating EV uptake, many aspects of cell
targeting and the intercellular processing of EV cargo signals are unclear and may be cell-type
specific [80]. Are different EV subtypes processed differently? Does the EV corona (see above) play
arole in directing EV's to target cells? Once an EV is expected to be inside a cell, it is commonly
assumed that any effect on target tissue or cells in vivo or in vitro can be attributed to EV cargoes.
Yet, the internalized EV's in target cells maybe targeted for degradation in lysosomes. What guides
the endosomal escape of EV cargo prior to degradation in lysosomes within target cells? In this
regard, an overlooked aspect is the relative advantage of EVs compared to other communication
means, such as cell-cell contact, nanotubes or soluble factors like cytokines, or extracellular RNA.

Key Unmet Challenges in Mapping EV Trafficking

1. Both EVs and viruses utilize the ESCRT system for their formation. However, these
biogenesis pathways, which are likely essential to defining EV biology, are not currently
used to differentiate EV subtypes. A better understanding of EV formation and cargo
loading during biogenesis will improve our understanding of EV-virus crosstalk.
While some EVs passively reflect cytoplasmic content, others actively sort molecules,
such as RNA, into their cargo [81, 82]. More insights into EV biogenesis are needed to
shed light on the EV-virus interaction.

2. Akey hurdle in investigating the mechanisms of EV membrane binding and endocytosis is
the need for several different techniques to capture these multi-stage processes. To
establish discrete pathways, innovative approaches are needed to block specific
intracellular components. Understanding these mechanisms is crucial for developing
targeted interventions.

3. EVs, like many viruses, can enter target cells through various mechanisms, including
tusion and endocytosis. The role of membrane binding and endosomal processing in
determining the interaction of EVs and viruses in target cells remains poorly understood.
Is endosomal escape by viruses affected by the presence of EV surface proteins and cargo?
Does such interaction functionally influence target cell pathogen recognition receptors
and other cellular antiviral response pathways? How are viral genomic elements,
carried by EVs, processed inside the target cells, and how do they change cell
physiology?

CONCLUSIONS

Addressing the main challenges discussed in our perspective has direct implications for clinical
medicine. Our grasp of disease pathogenesis will be markedly improved by better insights into
EV trafficking. A key example is the role of EVs in carcinogenesis and the metastatic spread of
a primary tumor, where trafficking of tumor-derived EVs may play a major role in shaping the
tumor microenvironment and the formation of distant pre-metastatic niches (reviewed in [83]).
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Additionally, improved EV isolation technology may allow the identification of virus-containing EVs,
which will serve both diagnostic and therapeutic targeting of virion-containing EVs. Furthermore,
the effect of EVs on the immune system may bolster research into their use in modulating antiviral
immune responses and other pathways underlying viral resistance [84]. These advancements
necessitate better technologies for EV characterization and standardization of quality and reporting,
which are essential for improved diagnostics, disease prediction, and prognostics [2, 47]. This also
includes the characterization of NVEPs, such as supermeres, where analysis of their cargo mole-
cules suggests a role for these particles in common diseases like Alzheimer’s, cancer, and cardio-
vascular disorders [51]. Further, as the EV corona harbors not only proteins but also lipoproteins
and nucleic acids, it may play a critical role in EV distribution and the targeting of engineered EV's
for therapeutic purposes [85, 86]. It may also affect the ability of EVs to cross barriers like the blood-
brain barrier. Therapeutically, these parameters are particularly important when Good Manufacturing
Practices guidelines must be met to ensure quality and safety before introduction into clinical care.

Given the burgeoning field of EV research, the key roles of EVs in communication among cells and
organs in health and disease, in particular the infectious ones, are gradually being elucidated. However,
understanding specific effects of EVs in viral infection remains hampered by the complexity of the

EV landscape in terms of their structure, size, density, formation, cargo molecules, loading pathways,
mechanism of uptake, cargo sorting in target cells, and biological function [87]. To further our under-
standing of the complex role of EV's in cell-cell communications under normal conditions and in viral
infection, we need to find reliable markers that distinguish EV's on the basis of their release pathways,
under standard laboratory conditions that faithfully capture processes that occur in vivo. Specific
mechanisms, such as the loading of EV cargoes and the integration of membrane proteins into EVs, in
particular into the virally encoded ones, warrant investigation. We need to investigate the mechanisms
of EV’ interactions with viruses and whether these occur both inside and outside the cells and define
the role of the various EV coronas in EV bioactivity and in their interaction with viruses.

To address these issues, a systems EV biology, rooted in statistical and computational methods,
might be needed to provide holistic insights into the complex interactions among cell of origin,
assorted vesicular messages, and recipient targets. Realizing these complexities forces us to re-
think EV types, their redundancy, communication language, and intriguingly, EV homology to
viruses and their crosstalk. Understanding how this general system is organized may require the
involvement of virology, cell biology, and broad expertise in systems biology, bioinformatics, even
in structural linguistics, as EV's constitute a language by which cells communicate to each other
[61, 62]. Such interdisciplinary collaboration may constitute the next frontier of EV science.
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