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ABSTRACT
There are a growing number of studies linking the composition of the human microbiome to 
disease states and treatment responses, especially in the context of cancer. This has raised signifi-
cant interest in developing microbes and microbial products as cancer immunotherapeutics that 
mimic or recapitulate the beneficial effects of host-microbe interactions. Bacterial extracellular 
vesicles (bEVs) are nano-sized, membrane-bound particles secreted by essentially all bacteria 
species and contain a diverse bioactive cargo of the producing cell. They have a fundamental role 
in facilitating interactions among cells of the same species, different microbial species, and even 
with multicellular host organisms in the context of colonization (microbiome) and infection. The 
interaction of bEVs with the immune system has been studied extensively in the context of in-
fection and suggests that bEV effects depend largely on the producing species. They thus provide 
functional diversity, while also being nonreplicative, having inherent cell-targeting qualities, and 
potentially overcoming natural barriers. These characteristics make them highly appealing for 
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development as cancer immunotherapeutics. Both natively secreted and engineered bEVs are now 
being investigated for their application as immunotherapeutics, vaccines, drug delivery vehicles, 
and combinations of the above, with promising early results. This suggests that both the intrin-
sic immunomodulatory properties of bEVs and their ability to be modified could be harnessed 
for the development of next-generation microbe-inspired therapies. Nonetheless, there remain 
major outstanding questions regarding how the observed preclinical effectiveness will translate 
from murine models to primates, and humans in particular. Moreover, research into the pharma-
cology, toxicology, and mass manufacturing of this potential novel therapeutic platform is still at 
early stages. In this review, we highlight the breadth of bEV interactions with host cells, focusing 
on immunologic effects as the main mechanism of action of bEVs currently in preclinical devel-
opment. We review the literature on ongoing efforts to develop natively secreted and engineered 
bEVs from a variety of bacterial species for cancer therapy and finally discuss efforts to overcome 
outstanding challenges that remain for clinical translation. 
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MICROBIOME REVELATIONS SPUR INTEREST IN BUGS-AS-DRUGS FOR CANCER
The human microbiome consists of the bacteria, fungi, viruses, archaea, and protozoans that 
symbiotically co-exist in and on the body [1, 2]. Commensal microbes have been detected in 
increasing anatomic locations outside the prototypical microbiome of the gut, including skin [3], 
lungs [4], genito-urinary tract [5], and blood [6]. As an integral part of organism homeostasis, the 
microbiome impacts endocrine function [7, 8], cardiovascular function [9], immune regulation 
[10], nutrient digestion [11], and even drug metabolism [12]. As a result, microbiome dysreg-
ulation, or dysbiosis, is being associated with a wide variety of diseases and clinical outcomes, 
including cancer [13, 14]. Following early preclinical results suggesting that an intact microbiome 
is critical to immunotherapy responsiveness [15], clinical studies demonstrated that the specific 
composition of the microbiome is associated with response and resistance to immune checkpoint 
inhibitor therapy across several cancer types [16–18]. Moreover, healthy donor fecal microbiome 
transplantation combined with PD-1 inhibition demonstrated efficacy in melanoma patients 
refractory to PD-1 inhibitor monotherapy [19, 20]. 

The microbiome’s effect on cancer immunotherapy highlights the promise of developing micro-
biome-based therapeutics and their value as potential biomarkers. However, the limited under-
standing of mechanisms that regulate host-microbiome interactions remains a challenge, despite 
increasing numbers of studies showing a correlation between the composition of the gut microbi-
ome and clinical outcomes. Akkermansia mucinophila [21], Bifidobacterium longum [22], Rumi-
nococcaceae [16], and a high Firmicute-to-Bacteroidia ratio [16, 23] have all been linked to check-
point inhibitor response in various cancers. One proposed mechanism for these observations is 
the effect of microbe-derived secreted metabolites on immunity upon absorption through the gut 
mucosa [24]. For instance, acetate produced by Bifidobacterium bifidum [25] and the short-chain 
fatty acid butyrate [26] were shown to enhance anti-tumor immunity by increasing tumor-infil-
trating IFNγ secreting CD8+ T cells. In addition, a series of studies has identified microbes within 
solid tumors, which are associated with immunotherapy response [27–29]. While there has been 
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some debate [30] regarding the validity of studies that rely on sequencing data to characterize 
tumor microbiomes [31], several studies have employed orthogonal approaches (including his-
tological analyses and culturing of live tumor-derived bacteria) to support the presence of viable 
microbes within tumors [27, 29]. As understanding of the rules governing tumor microbe col-
onization and the molecular basis of their effects increases, opportunities may arise for relevant 
diagnostics and therapeutics in this area as well. 

Besides metabolites and viable bacterial cells, bacterial extracellular vesicles (bEVs) comprise an 
additional bioactive component of the microbiome. These nano-sized (~20 to 200 nm) vesicular 
structures contain biologically active macromolecules (lipids, glycans, proteins, nucleic acids) and 
are produced by essentially all bacteria [32–34]. The role of microbiome-derived bEVs in modu-
lating immunity in cancer is only just beginning to be explored, with most studies focusing on ef-
fects bEVs have on cells in the lamina propria of the gastrointestinal tract [35–37]. Proof-of-prin-
ciple studies have demonstrated that bEVs administered systemically can modulate the immune 
microenvironment of tumors and affect treatment response [38–40]. These studies have raised 
significant interest in bEVs as potential therapeutics and biomarkers.

In this review, we first present an overview of established literature describing the immune effects 
of bEVs in various disease contexts and at barrier sites, as data suggests that this comprises the 
primary mechanism of action of therapeutic bEVs. We then discuss how bEVs are being devel-
oped as potential cancer therapeutics in preclinical studies. Future studies on the mechanisms 
governing bEV-host interactions will be instrumental in the development of relevant biomarkers 
and therapeutics. 

Bacterial EVs Modulate Innate and Adaptive Immunity 
Ongoing research suggests that the generation of bEVs is a tightly controlled mechanism char-
acterized by the inclusion of specific biologically active components [41]. These bEVs serve as 
vectors for bacteria-bacteria and bacteria-host communication by interacting with recipient cell 
receptors, delivering biological macromolecules, and incorporating them into the host cell cy-
toplasm [33]. Through these interactions, bEVs mediate intracellular signaling, horizontal gene 
transfer, virulence factor delivery [11, 42–45], and immune modulation [46]. Three primary 
mechanisms for the effects of bEVs have been suggested: endocytosis, membrane fusion, and 
receptor-mediated signaling. The kinetics of bEV-host cell entrance is governed by species-spe-
cific composition, such as the presence of specific structures of lipopolysaccharides (LPS) in 
gram-negative bEVs [11, 47–49]. The bEVs from some species, such as those produced by Aggre-
gatibacter actinomycetemcomitans, have also been shown to be internalized by cells and sorted to 
a peri-nuclear localization through clathrin-mediated endocytosis [50]. On the other hand, bEVs 
with O-antigens, such as those produced by Escherichia coli, can enter via lipid raft-dependent 
endocytosis subsequent to toll-like receptor (TLR) recognition [49]. 

Until recently, research on bEVs has mostly concentrated on outer membrane vesicles generated 
by gram-negative bacteria by membrane blebbing. Gram-positive bacteria, which lack an outer 
membrane, were initially thought likely to be incapable of EV release due to their strong pepti-
doglycan cell walls [51]. A renewed focus on the formation of these vesicles has been sparked by 
the discovery of physiologically active EVs in gram-positive bacteria in more recent investigations 
[51–53]. Structural variations between gram-negative and gram-positive bacteria induce distinct 
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EV biogenesis pathways. Three main theories have been put forward to explain how gram-neg-
ative bacteria release extracellular vesicles: genetic mutations that reduce the strength of the 
outer membrane-peptidoglycan bond, stress responses that cause the accumulation of envelope 
components, and changes in the stability of the outer membrane caused by interactions with LPS 
[46]. Gram-positive bacteria form vesicles by budding through the cytoplasmic membrane and 
entering the cell wall. The synthesis of EVs in gram-positive bacteria is assumed to be influenced 
by factors such as penicillin-binding proteins (PBPs) and autolysins, as well as genetic factors. As 
illustrated by Wang et al (2018) [53], specific mutations in penicillin-binding proteins and autol-
ysin have been observed to impact EV production, quantity, and size in Staphylococcus aureus, 
where EV release is correlated with the degree of peptidoglycan cross-linking. This provides more 
evidence that gram-positive bacterial species may exhibit substantial variation in the EV produc-
tion process.

In-depth proteomic and biochemical analyses have revealed that bEVs, like their parent bacteria, 
transport a variety of cargo, including immunostimulatory ligands such as membrane-bound 
and periplasmic pathogen-associated molecular patterns (PAMPs) [54], enzymes, toxins [55], 
polysaccharides [56], nucleic acids (DNA and RNA) [57], LPS, lipoteichoic acid (LTA) [58], and 
peptidoglycan [59]. Both commensal and pathogenic bEVs have been shown to modulate the 
host immune system via PAMPs that are recognized by host pattern recognition receptors (PRRs) 
such as TLRs and nucleotide-binding oligomerization domain-containing protein 1 (NOD1) [11]. 
The different biogenesis pathways during vesiculogenesis, the distinctive membrane envelope 
structure of their parental bacterium, the genetic make-up of the producing strain, and growth 
conditions all contribute to the heterogeneity of bEVs in terms of their structure, size, density, 
and molecular cargo composition. These properties in return have implications on vesicle bind-
ing, kinetics in tissues, immunologic effects, and other biological functions [60]. 

While there are some broadly-described mechanisms of bEV-host interactions (eg, NFκB activa-
tion via LPS/TLR4 [61] and LTA/TLR2 interactions [62]), the complete spectrum of their molec-
ular interactions and associated downstream effects depend on the producing bacteria strain, the 
recipient cell identity, and the biological context of the interaction (summarized in Figure 1). For 
example, it has been reported that E. coli bEVs elicit the production of TLR4-mediated CXCL8 
[76], while Lactobacillus casei [78] and Lactobacillus fermentum [78] LTA in bEVs stimulates 
the production of proinflammatory cytokines and chemokines in a TLR2-dependent manner. 
Helicobacter pylori bEVs activate cellular peptidoglycan sensor NOD1, whereas Pseudomonas 
aeruginosa bEVs generate atypical inflammation in human monocytes and mouse macrophages 
by inflammasome activation, IL-1 production, and cell death via caspase-5 [63, 64]. In addition, 
bEVs have also been shown to play a role in macrophage polarization. Chen et al reported that 
Fusobacterium nucleatum bEVs aggravated periodontitis by macrophage polarization towards a 
pro-inflammatory phenotype [65]. 
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Figure 1. Effects of bacterial extracellular vesicles on innate and adaptive immunity. Graphical 
depictions represent examples of effects attributed to bEVs. DAMPs (damage-associated molecular 
patterns). Created with BioRender.com.

In contrast, Mycobaterium tuberculosis bEVs suppress the immune response by activation of 
immunosuppressive macrophages [66]. T-cell suppressive responses are also modulated by H. 
pylori bEVs via increased COX-2 expression in monocytes [63]. Lactobacillus bEVs can attenuate 
LPS-stimulated inflammatory signals in macrophages and microglial cells downstream of Erk and 
p38 signaling pathways. A similar observation was noted using murine macrophages by Spi-
rometra erinaceieuropaei plerocercoid bEVs [67]. These and other studies demonstrate the large 
breadth of downstream effects that bEVs can mediate on the immune system.

An increasing number of studies are interrogating the role of bEVs at barrier sites, such as lungs, 
intestine, and sinuses, in the context of infection. For example, bEVs in bronchoalveolar lavage 
fluid activate cytokines and inflammatory mediators in alveolar macrophages [68], while various 
strains of Enterovirus bEVs are associated with acute gastroenteritis [69]. The bEVs in nasal lavage 
fluid activate mucin-type O-glycan biosynthesis and the TGFb pathway in chronic rhinosinusitis 
[70]. Acinetobacter baumannii bEVs are taken up by mammalian cells and activate the host GT-
Pase dynamin-related protein 1 that enhances its accumulation on mitochondria, causes mito-
chondrial fragmentation, elevation in reactive oxygen species production, and cell death [71]. 
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In addition, bEVs have been shown to be involved in non-infectious diseases, such as autoim-
muninty, asthma, and atopic dermatitis. For instance, Akkermansia muciniphila bEVs demon-
strated protective effects on the dextran sulfate sodium (DSS)-induced model of inflammatory 
bowel disease (IBD) [72], suggesting bEVs as a potential mediator of commensal microbe-host 
interaction in this disease. In another study of this IBD model, orally administered bEVs from 
Bacteroides thetaiotaomicron also ameliorated inflammation [73]. In addition to gastrointestinal 
microbiota, alterations in lung microbiota have been shown to affect mucosal immunity. For 
example, Pseudomonas aeruginosa has been shown to secrete regulatory sRNA52320, a fragment 
of a P. aeruginosa methionine tRNA that has been loaded into bEVs, reducing LPS-induced IL-8 
secretion in cultured primary human airway epithelial cells [74]. Using metagenomic analysis, in-
creased levels of the bEVs of Klebsiella spp and decreased levels of bEVs from Lactobacillus, Sphin-
gomonas, Akkermansia, and Micrococcus spp were found in the serum of patients with asthma 
[75, 76]. Lactococcus lactis bEVs modulate T helper (Th)1/Th2 balance by stimulating dendritic 
cells in a mouse model of S. aureus-induced atopic dermatitis [77]. Lactobacillus plantarum EVs 
demonstrated protection against S. aureus-induced atopic dermatitis [78]. Bifidobacterium bEVs 
have been shown to be associated with asthma susceptibility and atopic dermatitis by binding to 
mast cells and suppressing the allergic reaction inducing mast cell apoptosis [79]. 

In summary, bEVs from diverse microbial sources have been shown to have potent effects on 
immunity in a variety of contexts. These intrinsic properties have led to significant interest in the 
development of bEVs as a therapeutic immunomodulation platform, including for cancer treat-
ment, as discussed below.

Bacterial EV Applications for Cancer Immunotherapy 
While cancer immunotherapy has transformed the treatment of individuals with cancer, not all 
patients benefit from these approaches [80]. Dysfunctional immune activation and/or redundant 
mechanisms of anti-tumor immunity exhaustion in the immunosuppressive tumor microenviron-
ment (TME) play fundamental roles in facilitating cancer immune evasion [81]. Thus, strategies 
that boost immune activity in the TME can be useful to overcome resistance to immunotherapy 
[82].

Initial efforts to harness microbes for cancer treatment included developing oncolytic bacteria 
and bacteria expressing cytotoxic proteins or tumor-specific antigens [83, 84]. Accumulating re-
search has demonstrated that several bacterial species can potentially eliminate tumors by direct 
bacterial cytotoxicity, enhanced host immune response, and production of enzymes, bacteriocins, 
and toxins that disrupt the proliferation of cancer cells [85]. Attenuated Salmonella typhimurium 
and Clostridium novy, which were modified to express HlyE, Stx2, and recA, resulted in stimula-
tion of the host immune response, leading to the activation of cytokines such as IL-2, IL-4, IL-18, 
and CCL21, ultimately resulting in tumor regression and necrosis in preclinical models of various 
solid tumors [86, 87]. However, phase 1 clinical trials have failed to show tumor shrinkage in pa-
tients with metastatic melanoma, squamous cell carcinoma, and other solid tumors [86, 87]. Mice 
treated with Escherichia coli or Salmonella typhimurium strains producing the ClyA toxin were 
shown in a small number of trials to have reduced tumor development [88, 89]. Nevertheless, 
several critical obstacles remain in clinical applications of bacteriotherapy in cancer treatment, 
including bacterial persistence, toxicity, DNA instability, and targeting efficiency [84]. 
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As described in the previous section, bEVs possess immunomodulatory effects that are dependent 
on the microbial source and target immune cell, which constitute them as cell-free alternatives to 
bacteriotherapy. Given that essentially all bacteria produce them, bEVs exhibit wide heterogeneity 
in terms of dimensions, surface elements, and molecular cargo, making this a versatile platform 
technology for therapeutic development [90]. In addition, bEVs have the capability to traverse 
biological barriers while maintaining stability in the bloodstream [91, 92]. They also have the po-
tential to deliver their payload with some selectivity to the TME, either by passive accumulation 
as biological nanoparticles [40, 93], by engineered expression of tumor-targeting ligands [93], or 
by incorporation into host cells that home to tumors [94]. Furthermore, there is some successful 
clinical experience with bEVs, exemplified by the MenBVac vaccine for Neisseria meningitidis 
[95]. As a result of these characteristics, harnessing the immunostimulatory properties of bEVs 
along with additional engineering (such as incorporation of chemotherapeutic drugs and tu-
mor-targeting ligands) comprises an area of intense research efforts [96–98]. 

Harnessing Anti-Tumor Effects of Bacterial EVs
While efforts to develop therapeutic bEVs for cancer have utilized a diverse pool of source bacte-
rial strains (summarized in Table 1), many have focused on E. coli strains given the availability of 
relevant reagents and ease of modification. In an early study of bEVs as a potential immunother-
apeutic intervention for cancer treatment, Kim et al [40] utilized bEVs derived from E. coli that 
had been genetically engineered to lack the msbB gene, resulting in a strain with reduced endo-
toxin activity. 

The authors demonstrated bEV accumulation in subcutaneous mouse tumor models and the 
capacity to elicit a durable anti-cancer immune response that leads to substantial reductions in 
tumor sizes, dependent on CD8+ cells and the presence of IFN-γ [40]. In another study, E. coli 
BL21 (DE3) bEVs effectively induced immune responses, mediated by IL-6, TNF- α, IFN- γ, 
and CXCL10, which eliminated subcutaneous tumors in mouse models of urothelial and breast 
carcinoma [99]. Additionally, that study revealed that the administration of bEVs resulted in an 
increase in the population of intratumoral CD8+ T cells with stem-like properties that specifically 
target cancer antigens. This augmentation rendered the cancer cells more receptive to the effects 
of anti-PD-1 antibody immunotherapy. In addition, Won et al have shown that the application of 
E. coli bEVs in the TME resulted in the infiltration of T lymphocytes that specifically target cancer 
cells and express exhaustion markers, such as PD‐1, TIM3, and CD39 [99], suggesting the poten-
tial for combination with checkpoint inhibitors that are in clinical use or under development. 
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Table 1. Engineered bEVs for Therapeutic Applications in Cancer

bEV source Engineering method Treatment model Treatment effect Reference
Loading
E. coli Synthetic bEVs generated 

with lysozyme and high 
pH treatment, resulting in 
bEVs with fewer cytosolic 
components

Melanoma 
(B16F10) or colon 
carinoma (CT26 
cells)‐bearing mice

Tumor growth inhibition, en-
hanced efficiency of anti-PD1 
therapy

[100]

E. coli BL21 Functionalizing bEVs with 
tumor-targeting DNA 
aptamers

4T1 breast can-
cer-bearing mice

Selective pyroptosis, increased 
effector T-cell infiltration, 
decreased regulatory T cells, sup-
pression of tumor growth

[101]

E. coli Nissle 
1917

Perhexiline-loaded E. coli 
bEVs

CT26 colon cancer 
cell line in vitro

Repolarization of macrophages 
to M1 phenotype, apoptosis and 
inhibition of cell growth, invasion 
and migration

[102]

Klebsiella 
pneumonia

Doxorubicin-loaded bEVs A549 lung tu-
mor-bearing BAL-
B/c nude mice

Tumor growth inhibition, recruit-
ment of macrophages into tumor 
microenvironment

[103]

E. coli 
BL21(ΔmsbB)

bEVs loaded with paclitaxel 
and Redd1 siRNA

Triple-negative 
breast cancer in 
vivo model (4T1 
tumor-bearing 
mice)

Enhancement of glycolysis in M2 
macrophages with polarization, 
shift in tumor metabolism, sup-
pression of tumor growth, inhibit 
tumor metastasis

[104]

Targeting ligands

E. coli bEVs expressing an EG-
FR-targeting scFv version of 
panitumumab

Triple-negative 
breast cancer 
murine models 
(4T1tumor bear-
ing mice)

Enhanced tumor targeting, 
increased M1 macrophages and 
CD8 T lymphocytes

[105]

E. coli strain 
W3110

bEVs expressing ecto-
domain of programmed 
death 1 (PD1)

C57BL/6 mice 
bearing B16 mela-
noma cells, Balb/c 
mice bearing CT26 
colorectal cancer 
cells

Recruitment of cytotoxic T cells 
and dereased immune inhibitory 
PD-1/PD-L1 effects, enhanced 
anti-tumor response

[106]

Combination of loading and targeting
E. coli K-12 
W3110 strain

bEV-associated HER2-spe-
cific antibody in the surface 
by fusion to Cytolysin A, 
and loaded with siRNA 
targeting kinesin spindle 
protein

Cell lines that 
overexpress HER2 
(SKOV3, BT474, 
and HCC-1954),

HCC-1954 xeno-
grafts

Suppressed tumor proliferation in 
vitro and in vivo

[107]

Attenuated 
Salmonella 
typhimurium

bEV coating with DSPE-
PEG-RGD and loaded with 
5-fluorouracil(5-FU) prod-
rug tegafur

B16F10 melano-
ma, 4T1 breast 
cancer models in 
vivo

Inhibition of tumor growth, 
decreased metastatic nodules to 
lungs in melanoma model.

[109]
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bEV source Engineering method Treatment model Treatment effect Reference
Magnetospi-
rillum gryph-
iswaldense

bEVs containing iron ions, 
doxorubicin and modified 
with DSPE-PEG-cRGD 
peptides

4T1 breast cancer 
and

drug-resistant 
MCF-7/ADR 
tumors in mice

Inhibition of tumor gowth 
and metastasis to the lung in a 
4T1-Luc model of breast cancer 
metastasis to the lung in vivo, fer-
roptosis of targeted cancer cells

[109]

E. coli miRNA nano-delivery sys-
tem using zeolitic imidaz-
olate framework-8 (ZIF-8) 
coated with bEVs that are 
engineered to display PD1

Murine breast 
cancer model

Increased tumor treatment 
efficiency in murine breast cancer 
models in vivo by enhancing im-
mune activation and checkpoint 
inhibition mediated by bEV-PD1

[110]

Salmonella 
typhimuri-
um-pGFlaB

Doxorubicin-loaded Salmo-
nella bEVs

Mice bearing C6 
glioma

Inhibition of tumor growth, 
macrophage repolarization, 
neutrophil recruitment, P-gp 
downregulation

[94]

In addition, the investigation of the application of bEVs from other species is ongoing. Akkerman-
sia muciniphila bEVs were shown to have anti-tumor effects in a syngeneic prostate cancer mouse 
model by increasing the CD8+ lymphocytes and promoting macrophage differentiation into 
an inflammatory phenotype [111]. Bacterial EVs from other gram-negative strains (Salmonella 
enterica) and gram-positive sources (Lactobacillus acidophilus and Staphylococcus aureus) also 
showed anti-cancer effects in mice with CT26 tumors [40]. In addition, bEVs derived from Ba-
cillus licheniformisin inhibited the tumor growth both in MDA-MB-231 breast cancer and A549 
lung cancer cell lines [112]. These studies suggest that diverse speceies’ bEVs could have beneficial 
immunomodulatory properties for cancer therapy.

Despite these promising results, there is still the concern that bEV engagement of TLRs will 
lead to severe systemic toxicity. Some groups have approached this challenge by modifying the 
parental bacteria to attenuate endotoxin levels in bEVs [40, 107]. Others performed additional 
processing of purified bEVs with high pH treatment resulting in lower quantities of bacterial 
protein, RNA, and DNA [100]. While these bEVs exhibited an inability to induce an immunolog-
ic response through TLR3, 7, 8, and 9, they retained their ability to serve as adjuvants for a mouse 
melanoma-derived EV-based vaccine, suppressing tumor growth and metastasis and enhancing 
the treatment effect of anti-PD-1 antibodies [100]. Yet another approach has been to shield en-
dotoxin with tumor-targeting DNA aptamers. In one application, this enabled triggering LPS-de-
pendent pyroptosis in preclinical breast cancer models without severe systemic toxicity [101].

Direct experimental evidence in cancer models or extrapolation from microbiology and infec-
tious disease research suggests that the anti-tumor effects of bEVs are largely driven by interac-
tion between bEV components with innate immune receptors. However, there is also evidence 
that bEVs can directly impact cancer cell biology. For instance, Akkermansia muciniphila bEVs 
can transfer bacterial acetyltransferase to both colorectal cancer cell lines and mouse cancer 
models, resulting in increased H3K14 acetylation and heat-shock protein 70 (Hsp70) expression, 
which indirectly induces immune activation of CD8+ cytotoxic T lymphocytes [113]. The bEVs 
produced by E. coli strain A5922 were shown to induce oxidative stress, increase PINK1 expres-
sion, and reduce mitochondrial membrane potential in HT-29 colon cancer cells, which led to 
decreased viability [92]. In HepG2 hepatic cancer cells, Lactobacillus rhamnosus GG bEVs also 
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resulted in a higher Bax/Bcl-2 ratio with activation of apoptosis and subsequent cell death in vitro  
[114]. Direct effects on cancer cells may also synergize with cancer-directed therapies, as was the 
case with Klebsiella pneumoniae bEVs that enhanced the anti-cancer properties of tamoxifen in 
MCF-7 cells via the activation of Cyclin E2 and pERK signaling, which resulted in inhibition of 
cancer cell proliferation in vitro [115].

Despite being considered potential innovative therapeutic tools, there are several questions re-
garding the optimal dose, delivery method, biodistribution, and pharmacokinetics of bEVs. Until 
now, the majority of pre-clinical investigations have focused on examining the biodistribution 
and pharmacokinetics of EVs through the utilization of mouse models. Various biodistribution 
studies demonstrated that bEVs are primarily found in organs with a dense vascular network and 
other tissues connected to the reticuloendothelial system, such as liver, spleen, lung, and kid-
neys [116]. Furthermore, in the case of mammalian EVs, half-life in blood varies by cell source, 
ranging from 30 minutes to 6 hours before being cleared by reticuloendothelial macrophages, 
which detect negatively charged phosphatidylserine on the membrane of EVs [117–119]. Thus, it 
is possible that the source species will also impact the pharmacokinetics of bEVs. The impact of 
the administration method on the circulation time and biodistribution of bEVs remains poorly 
comprehended, as only a limited number of research projects have explicitly evaluated different 
administration routes, mostly utilizing mammalian cell-derived EVs administered in mice [120]. 
Although the animal studies offer useful insights into the biodistribution of EVs, these findings 
may not be completely applicable to bEVs. Variations in extracellular protein/lipid composition, 
EV labeling technique, and the type of EV donor cells may all have a role in EV biodistribution 
beyond the initial route of delivery. Circulation times may also be influenced by species distinc-
tions between the recipient and the EV source [121]. 

Given the rapid elimination of bEVs from circulation, substantial research is needed to design op-
timal bEV therapeutics able to reach target tissues. One such approach involves the direct delivery 
of bEVs to tumors for local and/or abscopal therapeutic effects [122]. Additional strategies may 
include transient blockade of rapid clearance by the reticuloendothelial system, previously shown 
to enhance tumor accumulation of administered mammalian EVs [119]. Finally, applications of 
bEVs from some species may have more favorable pharmacokinetic profiles than others. As de-
scribed in the section below, a different approach could involve engineering to alter the intrinsic 
properties of bEVs. This area of research is far more advanced in the field of mammalian EVs and 
synthetic nanoparticles [123–126], which could provide significant insight for bEV applications 
as well. For example, mammalian EV circulating time was significantly increased when they were 
engineered to express the “don’t-eat-me” signal, CD47, which inhibits phagocytosis by macro-
phages upon ligation with its receptor, SIRPα [127]. Others have modified the surface of EVs and 
nanoparticles by chemical modification (click chemistry), glycan modification, and insertion 
of specific peptides to further modify their pharmacokinetic characteristics [128]. In summary, 
combinations of optimized administration and engineering strategies are likely to be needed for 
the effective application of bEVs in cancer therapy. 

Engineering bEVs for therapeutic applications in cancer. Aside from having inherent biological 
activity, bEVs can be further modified to construct customized drug delivery systems either by 
engineering the producing bacteria or isolated bEVs. 
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Various methodologies have been devised to encapsulate exogenous proteins and pharmaceuti-
cal agents into bEVs, often applying technologies developed for synthetic nanoparticles. These 
approaches have demonstrated the ability of bEVs to acquire supplementary biological attributes 
[129]. Escherichia coli Nissle 1917 bEVs passively loaded with perhexiline delivered this com-
pound to macrophages, which were reprogrammed from an immunosuppressive to an inflam-
matory phenotype [102]. When these reprogrammed macrophages were co-cultured with CT26 
colon cancer cells, they promoted apoptosis and inhibited invasion and migration [102]; bEVs 
generated from attenuated Klebsiella pneumonia passively loaded with doxorubicin also induced 
cell apoptosis, cytotoxicity, and immunogenicity by attracting macrophages in the TME of mice 
with a transplantable model of non-small-cell lung cancer [103]. In a mouse model of triple-nega-
tive breast cancer, bEVs from E. coli BL21 were surface-functionalized with paclitaxel and elec-
troporated with Redd1 siRNA and were effective immune activators and drug carriers [104]. The 
absorption of paclitaxel by immunosuppressive macrophages was shown to enhance glycolysis 
[104], and the use of siRNA to repolarize tumor-associated macrophages (TAM) and increase 
tumor immune activation led to a shift in tumor metabolism and the subsequent suppression of 
tumor growth. In another application, “self-blockade” of tumor cell PD-L1 and improved treat-
ment effectiveness in mice tumor models were achieved by the introduction of an encapsulated 
plasmid expressing PD-1 to cancer cells [130].

Besides loading therapeutics, several groups have developed engineered bEVs with targeting 
ligands to enhance specificity of delivery. Adriani et al targeted triple-negative breast cancer 
murine models using modified E. coli bEVs expressing an EGFR-targeting scFv version of pani-
tumumab [105]. These scFv-bEVs bound to EGFR-overexpressed cancer cells more than control 
bEVs and also displayed enhanced tumor targeting in EGFR-expressing models in vivo [105]. 
Similar to prior studies, these bEVs re-polarizated macrophages to an inflammatory phenotype 
and potentiated the recruitment of cytotoxic CD8+ T lymphocytes [105]. Engineered E. coli strain 
W3110 bEVs with surface PD-1 ectodomain also demonstrated potent anti-tumor responses in 
vivo [106]. The modified PD-1-bEVs attach to PD-L1 on the surface of cancer cells, causing it to 
be internalized and decreasing surface expression, therefore shielding attracted T cells from im-
mune suppressive signals of the PD-1/PD-L1 axis [106]. 

As technologies for loading and targeting are expanding, studies are beginning to combine the 2 
approaches for further enhancement of therapeutic effects. For example, the E. coli K-12 W3110 
strain was modified to present bEV-associated HER2-specific antibody on the surface by fusion to 
Cytolysin A and loaded with siRNA targeting kinesin spindle protein [107]. These modified bEVs 
exhibited cytotoxic effects on cell lines that overexpress HER2 (SKOV3, BT474, and HCC-1954) 
when tested in vitro. Additionally, in vivo experiments using HCC-1954 xenografts have shown 
that bEVs significantly suppressed tumor development compared to the control group treated 
with a vehicle. Others have tested the use of engineered bEVs in combination with synthetic 
nanomaterials to generate hybrid nanoformulations. Chen et al modified attenuated Salmonella 
bEVs to display RGD peptide by functionalization with DSPE-PEG-RGD for cellular targeting 
[108]. They then combined these bEVs with polymeric micelles encapsulating the 5-fluorouracil 
(5-FU) prodrug tegafur by extrusion. This hybrid nanoformulation further enhanced tumor cyto-
toxicity and suppressed tumor development and metastatic nodules in several preclinical mouse 
tumor models [108]. DSPE-PEG-RGD-based targeting was also employed on bEVs from the 
magnetotactic bacterium Magnetospirillum gryphiswaldense, cultured in the presence of iron and 
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doxorubicin to generate bEVs loaded with all 3 of these components [109]. These bEVs resulted 
in ferroptosis of targeted cancer cells and immune activation and displayed preclinical therapeu-
tic efficacy in primary and metastic breast cancer models [109]. Cui et al also generated a hybrid 
nanoformulation consisting of miRNA encapsulated in a zeolitic imidazolate framework-8 and 
then coated with E. coli bEVs expressing surface PD-1/Cytolysin A fusion protein as a tumor-tar-
geting ligand [110]. These hybrid nanoparticles effectively delivered siRNA intravenously to 
mouse breast cancer models in vivo, significantly delaying tumor growth [110]. In another study, 
Mi et al employed a tandem bacteriotherapy/bEV strategy to target brain tumors, a long-standing 
challenge in drug development, given the blood-brain barrier [94]. Specifically, they showed that 
bacteriotherapy of brain tumors with attenuated Salmonella enhanced accumulation of Salmonel-
la bEVs loaded with doxorubicin via a hitchhiking process on circulating neutrophils (ie, bEVs 
associated with neutrophils in circulation, which the authors claim helped bring them to tumors) 
[94]. Given the complexity of this strategy, it remains to be seen whether such approaches will 
find broader application. 

Bacterial EVs in cancer vaccine research. Several bEV-based acellular vaccines have previously 
established the potential of bEVs to generate an adaptive memory immune response [131]. The 
most notable examples are vaccines against Neisseria meningitidis serogroup B, of which there are 
clinically used products [132, 133]. In addition, several studies have demonstrated the efficacy of 
bEVs derived from several gram-positive bacteria, such as Clostridium perfringens, Streptococ-
cus pneumoniae, Bacillus anthracis, Mycobacterium tuberculosis, and Staphylococcus aureus, as 
vaccines against infections in mouse models [134]. These bEVs have been shown to significantly 
improve survival rates following exposure to a lethal challenge with corresponding bacteria in 
preclinical models [134]. 

In the last decade, bEVs have been proposed as an appealing candidate for cancer vaccines owing 
to their notable immunogenicity, lack of proliferative capacity, and ability to transport and dis-
play custom target antigens on their membranes [135, 136]. These bEV cancer vaccines typically 
involve genetic engineering to introduce compounds such as foreign proteins and small RNAs 
into the vesicle lumen or onto the membrane surface, where they can act as antigens to stimulate 
an immune response while preserving the vaccine’s natural immunogenicity and minimizing 
any potential adverse effects [135]. For instance, Grandi et al demonstrated that administration 
of E. coli bEVs, engineered to express an epitope of the tumor-enriched antigen FAT1, generated 
tumor-targeting antibodies that protected mice from CT26 murine colon adenocarcinoma [137]. 
The same group also developed E. coli bEVs expressing peptide epitopes of EGFR-EGFRvIII by 
fusion to the Neiserria meningitidis factor H binding-vIII protein (Nm-fHbp) and described a 
vaccine-induced antibody response that was associated with inhibition of EGFRvIII-expressing 
B16F10 tumor growth in mouse models [138]. Moreover, bEVs have also been used to develop 
auto-antibodies against tumor promoting growth factors, such as FGF, which also provided pro-
tection against tumor growth in preclinical models [139]. 

To facilitate facile coating of bEVs with diverse tumor antigens, Cheng et al developed bEVs 
expressing Cytolysin A fused to SpyCatcher and SnoopCatcher peptides, which form covalent 
bonds with antigens fused to SpyTag and SnoopTag peptides, respectively [140]. In their proof-
of-concept investigations, the researchers demonstrated this methodology can induce T-cell 
reactions against several tumor antigens, resulting in a significant impairment in tumor growth in 
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mouse models of lung cancer [140]. Similarly, Li et al developed engineered bEVs expressing the 
RNA binding protein L7Ae, which allowed for post-purification binding to select mRNA vaccine 
constructs for tumor antigens [141]. Plug-and-play approaches such as these could comprise 
useful platforms for the rapid generation of personalized vaccines using off-the-shelf bEVs and 
custom-synthesized peptide or mRNA pools.

In addition to custom immunogen loading, others have further modified bEVs to enhance their 
efficacy as vaccines or combination vaccine/therapeutics. They incorporated the lysosomal escape 
protein listeriolysin O to facilitate and enhance the expression of the delivered mRNAs after cellu-
lar uptake [141]. In another combination approach, Liang et al developed a trained-immunity-re-
lated vaccine using bEVs expressing SIRPα to facilitate phagocytosis by antigen-presenting cells 
and GM-CSF to further activate these cells [142]. They showed that this vaccine, produced using 
E. coli bEVs, reduced subcutaneous tumor development in 2 models: MC38 (TAM-rich with 
low in T cells) and B16-F10 (T cell-rich with low TAM). They also reported that MC38 antitu-
mor mechanisms relied on both trained innate immunity and activated T-cell response, whereas 
B16-F10 responses predominantly relied on trained innate immunity, revealing that modulating 
macrophage activity within tumors is essential for vaccine-induced immunotherapy [142]. 

As in the case of immunotherapeutic bEVs, further understanding of bEV-immune interaction 
mechanisms will be instrumental in the further development of this platform as a form of novel 
cancer vaccines.

DISCUSSION: PATHWAY TO THE CLINIC
The understanding of the spectrum of bEV biological effects is facilitating the development of 
innovative therapeutic technologies; bEVs possess the capability to transfer biological cargo such 
as DNA, RNA, proteins, and lipids, providing at least partial protection against breakdown by the 
host organism [143]. The ability to tailor the interactions and functionalities of these biological 
nanoparticles suggests that bEVs may find use in cutting-edge diagnostic and therapeutic applica-
tions [96]. The anti-tumor effects demonstrated with the use of bEVs in preclinical cancer models 
(Figure 2) capitalize on a range of features, including inherent immunomodulatory capabilities, 
favorable potential for large-scale production, adaptability for personalized therapies, and en-
hanced safety profiles [144].

Despite these early promising results, there exist several significant hurdles in the transition of 
bEVs from bench-to-bedside clinical applications, some of which were summarized in position 
papers of the International Society for Extracellular Vesicles [145] and Chinese Society for Extra-
cellular Vesicles [146]. These concerns include toxicity of bacterial components, consistency of 
purification, and cost of production. 
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Figure 2. Proposed mechanisms of action of bacterial extracellular vesicles with anti-tumor effects 
observed in preclinical models. Created with BioRender.com.

Regulatory agencies generally classify bEV-based treatments as biologics [147]. Although bEVs 
exhibit reduced susceptibility to post-purification alterations in comparison to their progenitor 
cells, their analytical characterization and manufacturing processes pose more complexities when 
compared to other biologics often employed in clinical settings, such as monoclonal antibodies, in 
particular, due to their heterogeneity in size, origin, and composition. Indeed, regulatory clear-
ance will likely require that bEVs meet certain purity standards during manufacturing in addition 
to showing efficacy and safety [148]. Given the breadth of possible bEV sources and engineering 
modifications, it is likely that some of these will have to be determined on a case-by-case ba-
sis. Still, one could envision certain common criteria (for example, endotoxin activity or lack of 
high-molecular-weight, non-vesicular component contamination, such as gram-negative bacterial 
fimbriae [149] or the Factor H binding protein from Neisseria) [150]. Some of these criteria may 
need to comprise part of even early preclinical development to avoid investment of resources in 
candidate therapeutic bEVs that do not have beneficial properties.
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Despite any process standardization efforts, challenges with the concept of bEV purity will most 
likely remain. No current technologies exist that can produce “pure” EVs [151], while technol-
ogies that come closest (such as immunoisolation) [152] are not practically scalable. Moreover, 
discoveries such as that of a protein corona adsorbed to the surface of EVs with functional ram-
ifications [153] raises the possibility that more purity may not always be beneficial. The biophys-
ical overlap of putative contaminants with subsets of the heterogeneous EVs poses additional 
challenges, as methods that deplete one may affect the relative makeup of the other. In summary, 
perhaps more so than in the case of recombinant proteins, the industrial phrase “the process is the 
product” is highly applicable to the development of bEV therapeutics. In practice, dealing with 
this challenge may involve testing the impact of different bEV-enrichment strategies on desired 
functional attributes and toxicity of candidate products [145]. This approach goes together with a 
need for method standardization and transparency (for example, through EV-TRACK platform 
reporting) [154]. In addition, once methods are standardized for a given product, multiple or-
thogonal metrics of purity can be employed. These could include enrichment of total vesicular 
particles (measured by methods such as nanoparticle tracking analysis, tunable resistive pulse 
sensing, magnetic resistive pulse sensing, or nano-flow cytometry) [155]; particle-to-protein ratio 
[156]; enrichment of target marker proteins; and/or depletion of established undesired contami-
nants for a given bEV source. Finally, given the invariable presence of non-vesicular components 
in preparations, it is important to link function specifically to the bEVs themselves as opposed to 
the contaminants. Experimental approaches to this are still evolving and could include things like 
loss-of-function upon treatment with detergents, retaining function upon treatment with proteas-
es/nucleases, or retaining function in small-scale preparations of the highest purity possible.

Regarding mass production of bEVs, a significant benefit of a bacterial source as opposed to 
developing therapeutic EVs from a mammalian cell source is the ease of scaling up the process 
(usually in the form of bioreactor cultures). Several studies have described ways of improving 
bEV yields in these settings by additional environmental stresses including high pressure, high 
temperature, nutritional deficiency, shear stress, and ethanol [157, 158]. It remains to be seen 
whether these strategies will retain the desired functionality of purified bEVs. Regarding down-
stream purification, most development involves employing tangential flow filtration, followed 
by size exclusion or affinity chromatography [149, 159]. Recently, Won et al piloted a modified 
large-scale manufacturing process by combining metal precipitation and size‐exclusion chroma-
tography, which succeeded in cost-effectively mass-producing E. coli bEVs [99]. They compared 
the results of this novel technique to those obtained by using more traditional approaches with 
ultracentrifugation and buoyant density gradient ultracentrifugation [40, 160], observing yield 
and purity at least as good as those observed with other less scalable technologies. These studies 
comprise important first steps in developing workflows for efficient mass production of bEVs for 
further clinical development.

While past experience with bacteria-derived therapeutics and ongoing research are likely to 
overcome these technical challenges, there is still much to learn about the pharmacologic prop-
erties of bEVs. At a fundamental level, it is difficult to a priori predict the biological effects of 
bEVs, some of which can even have immunosuppressive properties [161]. In several published 
studies, the results of in vivo preclinical experiments are in line with the biological effects of bEVs 
modeled through in vitro functional assays [162, 163]. Applications of technologies used in the 
synthetic nanoparticle and mammalian EV fields can further improve the ability to predict and 
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modulate the properties of bEVs. For instance, by modifying nanoparticles to incorporate fluores-
cent markers, researchers can see the gradual incorporation and movement of bEVs into immune 
cells or organ-on-chip models as they happen in real-time [164]. Magnetic nanoparticles can also 
change bEV’s spatial distribution, allowing researchers to study how their localization influenc-
es human-cell interaction [165]. Moreover, encapsulating bEVs in synthetic nanoparticles may 
improve their stability and bioavailability [166]. Combining these strategies may comprise prom-
ising solutions to optimize the pharmacologic properties of bEVs.

A vast majority of in vivo studies have utilized mouse models, and it remains unclear how other 
mammalian (especially primate) immune systems will respond to these complex agents. Given 
the established distinct characteristics of murine immune systems [167, 168], preclinical testing 
in non-human primates is likely to represent a critical step in the development of therapeutic 
bEVs for at least some applications. This is true both to elucidate on-target immune effects and to 
assess toxicity, especially as multiple groups are working on engineering “attenuated” bacteria that 
produce bEVs with presumed less systemic toxicity [108, 169, 170]. 

Another major concern is the development of anti-drug antibodies or other forms of anti-drug 
immune response against a repeatedly administered xenobiotic drug. Long-term, repetitive 
administration of non-human EVs can result in either immunogenicity or allergenicity [171, 
172]. Qing et al attempted to prevent the formation of anti-drug antibodies by encapsulating E. 
coli bEVs in biocompatible calcium phosphate which dissolves in acidic TME to release the bEV. 
When paired with a photosensitizer, these encapsulated bEVs elicited photothermal immunogen-
ic cell death in CT26 solid tumor mice and 4T1 tumor mice [173]. It remains to be seen wheth-
er engineering approaches such as these are necessary to retain therapeutic properties of bEVs 
administered repeatedly. 

CONCLUDING REMARKS 
Studies investigating potential therapeutic applications of bEVs for cancer immunotherapy have 
been significantly increasing over the years, with promising results. However, if they are to be fur-
ther developed as a therapeutic platform, our understanding of their biologic and pharmacologic 
properties in model systems and primates will need to significantly expand. The same is true for 
identifying bEV sources with desirable intrinsic properties and/or designing engineering modifi-
cations to improve the safety and efficacy of potential therapeutic bEVs. Elucidating mechanisms 
of biogenesis, heterogeneity, and downstream molecular signaling on tumor and microenviron-
ment cells is critical for taking this technology to more advanced stages of drug development. 
Moreover, this will enable the rational combination of bEV therapeutics with other modalities, 
such as various immunotherapy approaches. Advancements in understanding these biological 
parameters, together with improvements and standardization of technologies to manufacture 
and characterize bEVs and their pharmacologic properties will help transform this field from 
proof-of-principle to actual clinical application as a versatile and promising therapeutic platform 
for cancer.
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