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ABSTRACT
Background: Ureaplasma parvum (UP) is a causative agent of non-gonococcal urethritis, in-
volved in the pathogenesis of prostatitis and epididymitis, and it could impair human fertility. 
Although UP infection is a frequent cause of male infertility the study evidence assessing their 
prevalence and the association in patients with infertility is still scarce. The molecular processes 
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leading to defects in spermatozoa quality are not completely investigated. MicroRNAs (miRNAs) 
have been extensively reported as gene regulatory molecules on post-transcriptional levels in-
volved in various biological processes such as gametogenesis, embryogenesis, and the quality of 
sperm, oocyte, and embryos.

Methods: Therefore, the study design was to demonstrate that miRNAs in body fluids like sperm 
could be utilized as non-invasive diagnostic biomarkers for pathological and physiological condi-
tions such as infertility. A post-hoc bioinformatics analysis was carried out to predict the path-
ways modulated by the miRNAs dysregulated in the differently motile spermatozoa.

Results: Here it is shown that normospermic patients infected by UP had spermatozoa with 
increased quantity of superoxide anions, reduced expression of miR-122-5p, miR-34c-5, and 
increased miR-141-3p compared with non-infected normospermic patients. This corresponded 
to a reduction of sperm motility in normospermic infected patients compared with normosper-
mic non-infected ones. A target gene prediction presumed that an essential role of these miRNAs 
resided in the regulation of lipid kinase activity, accounting for the changes in the constitution of 
spermatozoa membrane lipids caused by UP. 

Conclusions: Altogether, the data underline the influence of UP on epigenetic mechanisms regu-
lating spermatozoa motility. 
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INTRODUCTION
Recent data from the World Health Organization (WHO) revealed that, globally, about 48 mil-
lion couples and 186 million individuals have infertility (World Health Organization. Laboratory 
manual for the examination and processing of human semen. WHO, Geneva, 2021). Many factors 
contribute to human infertility, in which genital tract infections are represented as one of the ma-
jor factors with a prevalence of 6%–10% worldwide [1]. Several studies revealed that Chlamydia 
trachomatis, Mycoplasma spp, and Ureaplasma spp play an important role in both genital infec-
tions and infertility representing the main agents encountered in male infertility cases. Indeed, in 
these in vitro studies the authors demonstrated that the co-incubation of sperm with Chlamydia 
caused a significant drop in the number of motile sperm and premature sperm death. Eley et al 
measured lipopolysaccharide levels in sperm and correlated them with parameters of sperm qual-
ity, including that of sperm function. It has also been shown that lipopolysaccharide induces ex-
cessive production of reactive oxygen species (ROS) in spermatozoa and that this reduces sperm 
motility [2–4]. Despite the fact that other pathogens such as the bacteria Chlamydia trachomatis 
(CT) and Neisseria gonorrhea (NG), molds, and trichinosis can cause genital tract infections [5], 
even if at relatively low incidence rates, U. urealyticum, a natural resident of the male urethra, is 
the main causative organism of male genital tract infections contaminating seminal fluid during 
ejaculation and contributing to both genital infections and male infertility. Infections caused by 
these microorganisms are often asymptomatic, hence the exact role and mechanisms by which 
genitourinary microorganisms affect human fertility potential remain unknown [3, 6]. Frib-
erg and Gnarpe were the first to prove the high frequency of Ureaplasma strains in the sperms 
of infertile men (76%), compared to fertile men (19%) [7]. Thereafter, the correlation between 
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Ureaplasma spp infections and male infertility were extensively studied. To date, the frequency of 
isolated Ureaplasma strains in seminal fluids of infertile men ranged from 5% to 58%, in contrast 
to 3%–31% of fertile men [3, 8]. In addition, Fowlkes et al showed that the semen parameters 
of men with Ureaplasma infection were altered, compromising sperm function [9]. Ureaplasma 
spp naturally colonize the male urethra and consist of 2 species, Ureaplasma parvum (UP) and 
Ureaplasma urealyticum (UU) [10]. Firstly, Zinzendorf et al in a study reported the effect of U. 
urealyticum infection on semen analyzing parameters in male patients with infertility [11] and 
compared it with data from normal patients. Other studies are consistent with this, researchers 
have shown that U. urealyticum infection in the male genital tract negatively affects semen quality 
[12] significantly involving the pH value, liquefaction time, concentration, and motility in semen 
samples. Most studies examined the role of UU in male infertility while little evidence about the 
mechanisms of male infertility induced by UP infections has been reported [13–15]. Since the 2 
species differ in pathogenicity, the impact of UP on sperm function could be different [9].

Therefore, understanding the primal molecular processes in response to UP infections could be 
relevant for the selection of innovative therapeutic and diagnostic targets. In this context, recent 
studies reminded us that several miRNAs showed a dynamic expression pattern during the life 
and maturation of spermatozoa [16]. The microRNAs (miRNAs) are small non-coding RNA 
molecules, tissue-specific, implicated in the posttranscriptional regulation of gene expression 
and constitute a kind of molecular marker for tissue and body fluids identification [16, 17]. These 
molecules play regulatory roles in various biological processes, including development, cell pro-
liferation, cell differentiation, cell death, metabolic control, transposon silencing, and anti-viral 
defense. Several studies have shown that sperm can be distinguished from other body fluids using 
the assessment of specific miRNAs evaluated by RT-PCR [18, 19].The motility of spermatozoa 
is an important parameter for evaluating semen quality and an essential factor for fertilization 
events. Therefore, a seminal marker that could provide information about the spermatogenesis 
status during infection will be of immeasurable value for diagnostic teams [20, 21]. Different 
miRNAs involved in the regulation of sperm motility have been identified, such as hsa-miR-141-
3p, hsa-miR-122-5p, and hsa-miR-34c-5p [19, 22–26].

However, no evidence on the role of these miRNAs in UP infections and their relationship with 
semen quality has been reported. Therefore, the present study aimed to examine the level of 
expression of hsa-miR-141-3p, hsa-miR-122-5p, and hsa-miR-34c-5p in seminal fluids, obtained 
from patients infected by UP. In addition, the prediction of target genes regulated by the tested 
miRNAs could contribute to the understanding of the molecular mechanism underlying the in-
fertility caused by UP [20, 23, 24].

METHODS

Collection and Analysis of Semen Samples
Our study was conducted on 52 semen samples, collected, and analyzed at the Andrology clinic, 
University of Campania Luigi Vanvitelli (Vanvitelli University) in Naples between July and Oc-
tober 2022. Written informed consent was obtained to authorize the anonymous collection of 
sperm analysis results and exuberant sperm samples for research aims according to the Ethical 
Committee of the Vanvitelli University (Protocol number 0022538/I, 20/07/2022). The ejaculates 
were collected from patients attending the clinical center with ages between 25 and 39 years old. 
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Seminal fluids were collected by masturbation after 3 to 5 days of recommended sexual absti-
nence. Before collecting the samples, participants were recommended to wash their hands and 
genital area with water and soap. 

Samples were collected in sterile plastic containers and transported to the microbiology laborato-
ry within 1 hour. They were placed in the incubator for 30 minutes for liquefaction and subjected 
to routine semen analysis and polymerase chain reaction (PCR) to detect bacteria. Sperm con-
centration, vitality, and motility were evaluated, using the SQA-V GOLD method (Ab analitica, 
Padova, Italy), in agreement with the WHO guidelines 2010 [21, 27].

DNA Extraction and UP Detection
The extraction of genomic DNA is a necessary step before the analysis of clinical samples with the 
Anyplex™ II STI-7 Detection Kit. The extraction was performed with GeneAllxgene Cell SV mini-
Kit (GeneAll Biotechnology, Seoul, South Korea) according to the manufacturer’s instructions. 
UP was detected by Anyplex II STI-7 (Seegene, Seoul, Korea), in agreement with the manufactur-
er’s instructions [28].

Reference testing was performed using the multiplex real-time PCR Anyplex™ II STI-7 Detec-
tion Kit. Briefly, for each sample, 5 µL of the extracted DNA was added to a final volume of PCR 
Master Mix consisting of 5 µL of 4X STI-7 TOM (amplification and detection reagents), 5 µL of 
4X Anyplex PCR Master Mix (DNA polymerase, uracil-DNA glycosylase, and buffer containing 
dNTPs), and 5 µL of RNase-free water (ultrapure quality, PCR grade). One positive and one nega-
tive control were included in each run. The CFX96Ô Real-Time PCR system (Bio-Rad) was set up 
to carry out the DNA amplification and detection. The real-time PCR was programmed according 
to the guiding procedures on the manufacturer’s protocol and was examined with Seegene viewer 
software.

Randomization of Semen Samples
According to reference values for sperm concentration and UP presence, semen samples were 
selected, anonymized, and randomized as follows (n= 10 per group): i) (N): sperm concentration 
> 15 M/mL and absence of bacteria; ii) (I): sperm concentration > 15 M/mL and presence of UP.

Sperm miRNA Isolation
Within a few hours after collection, sperm cells were isolated from the exuberant human seminal 
plasma according to the Ethical Committee of Vanvitelli University (Protocol number 0022538/I, 
20/07/2022). Specimens were centrifuged at 500g for 10 minutes at room temperature; then 
sperm pellets were stored at -80°C in a Frozen Storage Buffer (FBS) until a short-term usage. 
Then, sperm pellets were thawed, washed twice with phosphate-buffered saline (PBS) to remove 
FSB, suspended in a Somatic Cell Lysis Buffer and incubated on ice for 30 minutes to obtain the 
somatic cell lysis [27, 29]. The presence of somatic cells was verified with microscopic examina-
tion and the process was repeated until somatic cells were no longer visible [27]. 

Total RNA was isolated by using miRNeasy Mini kit (Qiagen, USA), according to the manufac-
turer’s protocol (Purification of Total RNA, Including Small RNAs, from Animal Cells) with some 
modifications during the lysis stage, as previously described [22, 23]. Briefly, frozen sperm pellets 
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were homogenized in the lysis buffer for 90 seconds at low settings. After incubation at 65°C for 
5 minutes, microscopic examination was used to verify complete lysis of sperms. When this was 
achieved, the default protocol was resumed. After homogenization, Syn-cel-miR-39 was added 
to each preparation before RNA purification on spin columns, to monitor RNA isolation efficacy. 
Then, chloroform was added before centrifugation, to obtain the separation of the upper aque-
ous colorless phase containing RNA from the other 2 phases (the white interphase and the lower 
red organic phase). Then, RNA samples were purified by spin columns, before RNA elution with 
RNAse-free water. A NanoDrop™ 1000 (Thermo Scientific) spectrophotometer was used to evalu-
ate RNA concentration and purity.

miRNA qRT-PCR
Mature miRNAs were converted to cDNA by using MiScript II Reverse Transcription Kit (Qia-
gen) and GeneAmp PCR System 9700 (Applied Biosystems). After the addition of the buffer, 
nucleic mix, reverse transcriptase mix, RNAse-free water, and RNA, samples were incubated for 
60 minutes at 37°C and for 5 minutes at 95°C, according to the manufacturer’s protocol. Then, 
CFX96 Real-Time System C1000 Touch Thermal Cycler (BioRad Laboratories, Inc), miScript 
SYBR Green PCR kit (Qiagen) and specific miScript primer Assays (MS00003507, MS00003416, 
MS00003332–Qiagen, USA) were used to evaluate hsa-miR141-3p (Accession number MI-
MAT0000432), hsa-miR-122-5p (Accession number MIMAT0000421), and hsa-miR-34c-5p 
(Accession number MIMAT0000686) expression levels by triplicate measurements of each 
sample. An initial incubation step at 95°C for 15 minutes was performed to activate the DNA 
polymerase, then the cycling conditions for qPCR were 15 seconds at 94°C (denaturation), 30 
seconds (annealing) at 55°C, 30 seconds at 70°C (extension). These steps were repeated for 40 
cycles. Then, miRNA levels were normalized by using the combination of 2 internal controls, hsa-
miR-100-5p (MS00031234 Qiagen; Accession number MIMAT0000098) and hsa-miR-30a-5p	
(MS00007350 Qiagen; Accession number MIMAT0000087), which was recently found to result in 
the best normalization strategy for miRNA quantification in sperm cells [30]. The amplification of 
Ce_miR-39-3p (MS00019789 Qiagen; Accession number MIMAT0000010) was a positive control 
for efficient RNA isolation. The 2-ΔΔCt method was used for miRNA level quantification, with Ct 
values detected by CFX ManagerTM Software (BioRad Laboratories, Inc) [31].

Superoxide Anion Assay
Superoxide anion content was determined in 1 x 106 spermatozoa for each group, by using the 
General Superoxide Anion Assay Kit (MBS8305395 My BioSource), according to the manufac-
turer’s protocol. Briefly, 20 µL of each sample was transferred to a 96-well plate and incubated 
with the substrate (20 µL) at 37°C for 20 minutes. After incubation, reagents I (80 µL, dissolved 
in distilled water) and II (80 µL, dissolved in alcohol) were added in succession to the test sam-
ples. Color intensity, linear to the Superoxide Anion content in the sample, was measured at 530 
nm using a microplate reader (TECAN, Männedorf, Swiss). The superoxide anion amount was 
obtained referring to the standard curve supplied by the kit.

miRNA Target Gene Prediction
The prediction of hsa-miR-122-5p, hsa-miR-34c-5p, and hsa-miR-141-3p target genes was 
achieved using miRTarBase software (miRTarBase v8.0 beta, Hsinchu, Taiwan). According to 
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the set parameter (P value < 0.05), the potential target genes commonly regulated were selected. 
Metascape software (Metascape v5.0, San Diego, CA, USA) was used for the enrichment of gene 
ontology (GO) and the identification of protein-protein interaction networks (PPI-Nets) [17] 
(Figure 1).

Figure 1. Schematic workflow of target genes prediction process.

Statistical Analysis
Student’s t test was used for data analysis. The association between sperm miRNA levels and 
sperm variables (bacterial load UP, sperm concentration, and motility) was evaluated by Pearson 
correlation analysis. A P value < 0.05 was considered significant. Statistical analysis was per-
formed using GraphPad Prism 6.0 software [32–34].

RESULTS

Analysis of Sperm Motility
Total sperm motility was significantly reduced in the I group compared to N (fold= -1.54, P < 0.05 
vs N), with a parallel increase in not-motile sperms (fold = +1.44, P < 0.05 vs N). Moreover, when 
analyzing progressively motile and non-progressively motile sperms, a decrement of progressive 
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sperms was noted when comparing the I and N groups (fold = -1.57, P < 0.05 vs N), paralleled 
by a marked increase of non-progressive sperms (fold = +3.6, P < 0.05 vs N) (Table 1). Immobile 
sperms increased up to 1.6-fold, P <0.05 comparing the N group against I (Table 1).

Table 1. Characteristics of the Total Population

 Total motility PR (%) NP (%) IM (%)
 N (n=10) 52 ± 6.0 92 ± 6.3 8.0 ± 2.7 48 ± 4.0
 I (n=10) 33 ± 5.0* 64 ± 5.0* 36 ± 2.0* 67 ± 3.0*

Data are reported as mean ± S.D. (n=10 per group). N= non-infected samples; I= infected samples; 
PR= progressive motility of spermatozoa; NP= non-progressive motility of spermatozoa; IM= immotile 
spermatozoa; *P < 0.05 vs N.

The 3 miRNAs analyzed showed a significant dysregulation in samples from UP-infected patients.  
In particular, miR-141-3p was significantly increased in I sperms (fold =+1.71, P < 0.05 vs N) 
compared to N samples, while miR-122-5p and miR-34c-5p were significantly reduced (miR-122-
5p fold = -1.96, P < 0.01; miR-34c-5p fold = -1.94, P < 0.01 vs N) (Figure 2).

Figure 2. Sperm miRNA levels. Human sperm hsa-miR-122-5p, hsa-miR-141-3p, and hsa-miR-34c-5p 
levels in non-infected (N) and infected (I) samples (N=10 per group), and miRNA expression levels are 
reported as 2-ΔΔCt ± SD (box plots). ** P < 0.01 vs N. 
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Relationship Between Semen UP Infection and Sperm miRNA Levels
The correlation analysis between UP bacterial load and sperm miRNA expression evidenced a 
positive correlation between UP with miR-141-3p (r = 0.574, P = 0.003), and a negative associa-
tion with miR-122-5p (r = -0.553, P = 0.004) and miRr-34c-5p (r = -0.540, P = 0.005) (Table 2).

Table 2. Association Between Semen UP and Sperm miRNAs

miR-122-5p  
(2-ΔΔCt)

miR-141-3p  
(2-ΔΔCt)

miR-34c-5p  
(2-ΔΔCt)

P (++) 105 (r) -0.553** (r) 0.574** (r) -0.540**

Pearson’s coefficient (r) between the presence of UP and miRNAs in sperm samples. ** P < 0.01.

Correlation Between miRNAs and Sperm Motility in UP Infection
Levels of miR-141-3p were associated with a reduction of sperms exhibiting a forward progres-
sion (r = -0.617, P = 0.002). Indeed, miR-141-3p expression was associated with a higher percent-
age of not-motile (r = +0.582, P=0.004) and non-progressive sperm cells (r = +0.719, P = 0.002). 
Overall, higher miR-141-3p levels indicated a significant reduction in total sperm motility (r = 
-0.664, P = 0.003). Conversely, miR-122-5p and miR-34c-5p levels correlated with an increase of 
total sperm motility (r = +0.730, P = 0.001; r = +0.676, P = 0.005, respectively) and progressive 
spermatozoa (r = +0.614, P = 0.002, r = 0.605, P = 0.003, respectively). These 2 miRNAs were as-
sociated with the reduction of non-progressive motility (r = -0.648, P = 0.01, r = -0.592, P = 0.02, 
respectively) and not-motile sperm cells (r = -0.619, P = 0.002; r = -0.575, P = 0.005, respectively) 
(Table 3).

Table 3. Association Between miRNAs and Sperm Characteristics

Hsa-miRs Total motility 
(PR+NP)

PR NP IM

122-5p (r) 0.730** (r) 0.614** (r) -0.648* (r) -0.619**
141-3p (r) -0.664** (r) -0.617** (r) 0.719** (r) 0.582**
34c-5p (r) 0.676** (r) 0.605** (r) -0.592* (r) -0.575**

Pearson’s coefficient (r) for the relation of miRNA levels with spermatozoa motility in UP-infected 
samples. PR= progressive motility of spermatozoa; NP= non-progressive motility of spermatozoa; IM= 
immotile spermatozoa; *P < 0.05 and ** P < 0.01.

Superoxide Anion Level in UP Infection
The superoxide anion (O-2) levels were evaluated to determine the oxidative stress damage 
caused by UP infection. The O-2 concentration was 0.035 and 0.062 mmol/L, in N and NI sam-
ples, respectively. The O-2 levels were significantly elevated in I sperms compared to the N group, 
showing a 77.1% increase (P<0.01) (Figure 3).
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Figure 3. Sperm superoxide anion levels. Superoxide anion content in spermatozoa from non-infected 
(N) and infected (I) samples (N=26 per group). Data are reported as mmol/L ± S.D. ** P < 0.01 vs N.

Correlation Between Superoxide Anion Levels, UP Bacterial Load, miRNAs and Sperm Motility
Pearson correlation analysis showed a positive association between O-2 content in sperm samples 
and UP infection (r = 0.727; P = 0.001). Moreover, O-2 levels were negatively correlated with both 
sperm miR-122-5p and miR-34c-5p (r = -0.780, P = 0.002 and r = -0.775, P = 0.002 respectively), 
while they showed a positive association with miR-141-3p sperm levels (r = 0.775; P = 0.003). In 
addition, O-2 was negatively correlated with sperm total motility (r = -0.793; P = 0.001) (Table 4).

Table 4. Association Between Superoxide Anion Levels, UP, miRNAs, and Sperm Motility

UP (++) 105 miR-122-5p miR-141-3p miR-34c-5p Total motility

Superoxide 
Anion (r) 0.727** (r) -0.780** (r) -0.580** (r) -0.775** (r) -0.793**

Pearson’s coefficient (r) for the relation of superoxide anion levels with UP infection, miRNA levels and 
total motility in sperm samples. ** P < 0.01.

Identification and Characterization of Target Genes
The prediction analysis of target genes regulated by has-miR-122-5p, has-miR-34c-5p, and has-
miR-141-3p was obtained using the miRTarBase software. A number of 773 genes were com-
monly regulated by the tested miRNAs. Among these genes, the chosen parameter (P value 0.05) 
selected 510 genes, which were subjected to GO enrichment and the PPI-Nets, via the METAS-
CAPE tool. The target genes associated with the upregulated miRNA sequence (has-miR-141-3p) 
were closely associated with “regulation of kinase activity” (GO: 2790043549), “circadian rhythm” 
(GO: 0007623), “regulation of growth” (GO: 0040008) and “insulin signaling” (WP481) (Figure 
4). On the other hand, the predicted target genes of the 2 down-regulated miRNA sequences (has-
miR-122-5p and has-miR-34c-5p) were significantly involved in the “regulation of lipid kinase 
activity” (GO: 0043550) and “Autophagy” (GO: 0006914) (Figure 5).
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A

B

Figure 4. Gene target prediction. A) Functional enrichment analysis of target genes regulated by  
has-miR-141-3p sequence. B) Interaction network of the clusters detected by Metascape.
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Figure 5. Gene target prediction. A) Functional enrichment analysis of target genes regulated by has-
miR-122-5p and has-miR-34c-5p sequence. B) Interaction network of the clusters detected by Metascape.

DISCUSSION
The relatively high number of cases of unexplained male infertility represents a great challenge 
as many times it is not possible to detect any alteration by routine semen analysis, which mainly 
focuses on the count of sperm in the ejaculate and their morphology and motility. The association 
between urogenital infections and male infertility are known causes of infertility and has been 
studied with variable, inconclusive results.

Ureaplasma parvum has been recognized as a sexually transmitted infection that could impair hu-
man fertility. They are known to colonize the female and male reproductive tracts as commensals, 
and growing evidence has shown they are emerging sexually transmitted opportunistic pathogens 
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able to cause asymptomatic chronic disorders affecting female and male fertility.

The bacteria U. parvum may have a negative effect on semen quality, which can lead to infertility 
by attaching to sperm and influencing vitality, motility, morphology, cellular integrity, or host 
factors and cellular interactions [35]. Even if the influence of some genital bacterial infections 
on sperm function and spermatogenesis has been highlighted, the role of these infections as the 
significant causes of male infertility is still arguable. Therefore, clinicians should consider these 
infections in the treatment of infertile couples.

In the past decade significant improvements have been made in our understanding of sperm cell 
biology and also the ability to diagnose and treat male infertility, considering the large number of 
genes involved in male infertility phenotypes of genetic origin. In the last decade, some articles 
described the presence of miRNAs in all human tissues, including the reproductive system [36, 
37].

The miRNAs are essential molecules capable of affecting sperm quality and influencing different 
biological processes such as sperm maturation and capacitation [38]. As miRNAs are abundant in 
plasma, serum, and seminal plasma, it makes them appealing potential non-invasive biomarkers 
of sperm quality. Dysregulation of miRNAs is known to play a necessary role in male infertility. 
The presence of miRNAs in testis, epididymis, sperm cells, seminal plasma, and extracellular ves-
icles (ie, exosomes and microvesicles) and the known functions associated with these molecules 
suggest that deregulation of their expression may result in alterations in spermatogenesis and 
embryogenesis [39]. Spermatogenesis is a highly complex and regulated process that produces 
millions of sperm every day and miRNAs play an important role in spermatogenesis during the 
mitotic and meiotic phases of spermatogenesis through the regulation of targeted gene expression 
[40, 41]. Such perturbations could have the potential to give rise to various forms of infertility.

In particular, miR-141, miR-122, and miR-34 expression was found altered in sperms from ze-
brafish, affecting sperm motility and indicating a low-quality sperm [22, 23, 26]. Moreover, these 
miRNAs were altered also in spermatozoa from patients showing metabolic diseases or spermato-
genic impairments [19, 24, 25].

Here we show for the first time that patients who had urogenital tract infected by UP had seminal 
fluids containing spermatozoa with altered expression of 3 miRNAs involved in sperm motility 
[42]: miR-122-5p, miR-34c-5p, miR-141-3p. These miRNAs were analyzed in spermatozoa and 
not in sperm cells, to detect their levels as cellular miRNAs and not as secreted ones. Notably, 
miR-122-5p and miR-34c-5p were significantly decreased in spermatozoa from infected patients 
versus non-infected while miR-141-3p was significantly increased in the spermatozoa from 
infected patients. Several studies already reported that alteration of a specific pattern of miRNA 
expression is associated with alterations of sperm motility known as astheno-zoospermic and 
oligo-asthenozoospermic conditions, so they have a potential to reflect the testicular condition. 
However, the possible modulation of host miRNAs by bacteria has not been so deeply explored 
until now that they could be considered as non-invasive and effective predictive biomarkers for 
complete spermatogenesis [30]. Only a single study on female patients reported modification of a 
specific endocervical miRNA pattern in patients with Chlamydia trachomatis while other studies 
on mouse models only hypothesized an association between different species of Chlamydia and 
specific host miRNAs in the female murine genital tract [43–47]. To our knowledge, no evidence 
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reported a modulation of sperm miRNA by UP, and therefore this is a novel insight into explor-
ing host miRNA modifications by bacteria. To deepen the issue in an attempt to clarify whether 
UP-induced miRNAs modifications influenced spermatozoa motility, the percentage of motile, 
progressively motile, not-progressively motile, and not-motile sperms has been analyzed here by 
recording significant differences among the seminal fluids considered infected against non-in-
fected. Not-progressively motile and not-motile spermatozoa were higher in infected individuals 
compared to non-infected individuals [17, 25, 48]. Their motility was negatively correlated with 
miR-122-5p and miR-34c-5p expression, while positively associated with miR-141-3p expression. 
Therefore, infection of UP can precipitate sperm motility, and miRNAs are part of this action. 
In this context, although the relationship of sperm motility with changes in these 3 miRNAs was 
already reported [24], the data collected here relating to seminal fluids infected with UP are new. 

From a mechanistic point of view, an attempt to explain how the UP infection modifies the 
miRNAs first, and then the sperm motility, is traced here by 2 pieces of evidence, i) the chang-
es in spermatozoa epigenetics were paralleled by increased production of superoxide anion in 
infected sperms; ii) a post-hoc target gene analysis revealed an involvement of kinases activity 
in the UP-dependent effects [48–50]. The oxidative stress recorded in UP-infected sperms was 
so high compared to uninfected sperms that this factor is thought to have a key role in the ob-
served changes in miRNAs [19, 30, 51]. This latter contention is supported by extensive literature 
showing that oxidative stress can regulate microRNA biogenesis and expression mainly through 
modulation of their biogenesis course, their transcription factors, and their epigenetic phenom-
ena [52–54]. Worthy of note, miR-122-5p, miR-141-3p, and miR-34c-5p expression seem to be 
modulated by oxidative stress [49, 50, 52, 53, 55]. In the presence of infections, an imbalance of 
pro-oxidants and antioxidants occurs, in favor of oxidative stress. Supra-physiological levels of 
ROS affect sperm function and lead to infertility.

A post-hoc bioinformatics analysis was carried out to predict the pathways modulated by the 
miRNAs dysregulated in the differently motile spermatozoa [56–58]. A target gene prediction 
revealed that an essential role of these miRNAs resides in the regulation of lipid kinase activity, 
accounting for changes in the constitution of spermatozoa membrane lipids caused by UP [59]. It 
is noteworthy that PI3K, one of the 2 main lipid kinases along with SPHK1, can modulate sperm 
motility [60–63]. Alterations in the PI3K signaling pathway result in reduced motility [64, 65], 
increasing the rate of immobile and non-progressively motile spermatozoa. Further investigations 
are necessary however, aimed at a better understanding of the specific targets of the tested miR-
NAs deregulated by UP, for the selection of innovative diagnostic and therapeutic targets.

CONCLUSION
In the present work it was shown that non-motile and non-motile progressive spermatozoa were 
higher in infected individuals than in non-infected individuals. Their motility was negatively 
correlated with the expression of miR-122-5p and miR-34c-5p, while positively associated with 
the expression of miR-141-3p. Although the relationship of sperm motility with changes in these 
3 miRNAs has already been reported, this report provides evidence that the data collected here 
showed that UP-infected seminal fluids had sperm with increased superoxide anion, reduced ex-
pression of miR-122-5p, miR-34c-5, and increase of miR-141-3p compared to non-infected nor-
mospermic patients. Although our reported data are very valuable in a context where information 
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on the role of these miRNAs in UP infections and their relationship with semen quality is limited, 
some limitations should be considered. The main limitation of the study is the small number of 
patients. Therefore, programs should be implemented with studies involving multiple hospitals to 
confirm these preliminary data.
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