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ABSTRACT
Most vaccines against viral pathogens protect through the acquisition of immunological memory 
from long-lived plasma cells that produce antibodies and memory B cells that can rapidly respond 
upon an encounter with the pathogen or its variants. The COVID-19 pandemic and rapid de-
ployment of effective vaccines have provided an unprecedented opportunity to study the immune 
response to a new yet rapidly evolving pathogen. Here we review the scientific literature and our 
efforts to understand antibody and B-cell responses to SARS-CoV-2 vaccines, the effect of SARS-
CoV-2 infection on both primary and secondary immune responses, and how repeated exposures 
may impact outcomes.
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INTRODUCTION
The rapid global spread of SARS-CoV-2 and its deadly consequences quickly mobilized the scientific 
community to develop a panoply of vaccines [1], several of which have been highly effective at pre-
venting transmission or severe disease [2]. While the COVID-19 pandemic has caused worldwide 
suffering that will be felt for years to come, it has provided a few silver linings, one being an unprec-
edented opportunity to learn how the human immune system responds to a new pathogen and how 
new technologies can be rapidly translated into safe and effective vaccines. As with most vaccines, 
protection from SARS-CoV-2 infection or COVID-19 illness is largely mediated by antibodies, in 
this case against the viral spike protein delivered in the form of mRNA-based nanoparticles, adeno-
viral vectors, inactivated whole virus, or recombinant proteins [3]. Humoral immunity is sustained 
by 2 distinct arms of the B lineage, the plasma cells that secrete the antibodies and the memory B 
cells (MBCs) that can rapidly differentiate into antibody-secreting cells upon re-encounter with 
antigen. Antibody-mediated immunity can also be divided into different categories: namely primary 
versus secondary or recall responses, direct antigen-neutralizing and protective non-neutralizing 
functions, and whether a response or phase of a response is independent or not of T-cell help. This 
review will mainly focus on human B cells that are involved in generating and sustaining protec-
tive immunity following exposure to SARS-CoV-2 through infection and/or vaccination. Excellent 
reviews can be found elsewhere on the functional aspects of antibodies [4], and lineages such as B-1 
and marginal zone B cells (MZB) involved in providing T-independent natural immunity [5]. This 
review takes a chronological approach both in terms of the different stages of the COVID-19 pan-
demic and how they relate to different stages of B-cell immunity.

B CELLS ENGAGED IN THE PRIMARY IMMUNE RESPONSE TO mRNA VACCINES

Plasmablasts in response to infection 
In the early days of the COVID-19 pandemic when death rates were high, it quickly became apparent 
that the host response to the virus could have both disease exacerbating and beneficial effects [6–9]. 
Among the earliest B cells to be detected in the peripheral blood after acute infection or vaccination 
are plasmablasts, actively proliferating low affinity antibody-secreting cells that arise during the early 
extrafollicular T-independent phase of the immune response [5]. Plasmablasts are among the earliest 
indicators of acute infection, including with SARS-CoV-2 [10–12], in part because they are rapidly 
induced after exposure but also because basal levels are low and their distinctive features make their 
appearance in the circulation easy to track. The surge in plasmablasts may also arise from antigen 
nonspecific innate responses involving cytokines that are triggered by acute viral infections, includ-
ing SARS-CoV-2 [13]. This acute cytokine storm includes IL-6, CXCL10, and IL-10 [14], which can 
induce B-cell terminal differentiation, even in the absence of antigen [15]. In HIV infection, serum 
levels of these cytokines correlate with frequencies of plasmablasts in the blood, of which the highest 
frequencies occur during early infection when viremia is high [16]. In SARS-CoV-2 infection, the im-
munoglobulin gene repertoire of acute-phase plasmablasts has been reported as diverse, suggesting a 
polyclonal rather than virus-specific induction [10]. However, in other studies, plasmablast expansions 
have been associated with high antiviral antibody titers suggestive of a specific response to the virus 
[17, 18]. The plasmablasts may contribute to the early low-maturity antibody response that declines 
rapidly before a more stable neutralizing response arises from long-lived bone marrow-derived plasma 
cells [19]. However, there is uncertainty regarding the longevity of plasma cells against SARS-CoV-2 
[20], especially given the evidence of rapidly waning immunity following infection [21].
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Plasmablasts in response to vaccination 
The rapid development and approval of vaccines against SARS-CoV-2 under the emergency 
authorization use in late 2020 provided an unprecedented opportunity to investigate immune 
responses to what was essentially a neoantigen and to do so with study designs that could include 
baseline analyses which could not be performed with SARS-CoV-2 infection. This was also the 
first opportunity to delineate responses to an mRNA-based vaccine in humans. For the purpose of 
this review, the 2-dose regimen of either the mRNA-1273 (Moderna) or the BNT162b2 (Pfizer-Bi-
oNTech) is considered a primary immunization. As with SARS-CoV-2 infection, plasmablasts are 
induced rapidly following vaccination, of which a fraction may reflect recall response to cross-re-
active elements in the S2 subunit of coronavirus spike proteins [22]. However, in contrast to infec-
tion or other chronic conditions where plasmablasts in the blood can remain elevated for as long 
as the active disease persists [23], those induced by vaccination tend to arise and disappear rapid-
ly, consistent with their short-lived nature [24, 25]. In response to a first exposure, vaccine-specific 
plasmablasts in the blood reach their peak nearly 2 weeks after vaccination [26], while for subse-
quent exposures, the peak occurs faster, within about 7 days, and the plasmablasts are more likely 
to originate from an MBC recall response [27]. However, plasmablast responses can vary with 
different types of vaccines and routes of administration [28]. A further confounder is that most 
studies report on total plasmablasts and not necessarily those that are specific to the vaccine.

When SARS-CoV-2 vaccines became available at the end of 2020, NIH employees who were eligi-
ble received their vaccines onsite, which happened to be the 2-dose mRNA-1273 vaccine, given 28 
days apart [3]. We took this opportunity to evaluate the kinetics and magnitude of the B-cell and 
antibody response to this novel vaccine in a cohort of 21 NIH healthcare and laboratory employ-
ees. We used spectral flow cytometry, which captures the entire emissions spectrum and generates 
a spectral fingerprint for each fluorochrome [29], to evaluate both antigen-specific (the SARS-
CoV-2 spike protein) and non-specific B-cell responses among the major B-cell subsets that 
circulate in the peripheral blood, including plasmablasts, on freshly isolated samples [30]. We use 
the term non-specific to define responses that are not antigen-specified and note that a portion of 
this response may be specific but not captured by the assay used. Our design overcame 2 common 
challenges when studying plasmablasts: 1) the unavoidable detrimental effects of cryopreservation 
on their viability [31]; and 2) the inherent limitations of quantifying antigen-specific plasmablasts 
using quasi single parameter methods such as ELISPOT [32]. Our design also had its limitations, 
including the drift in lasers and settings that are difficult to normalize when performing assays 
in real-time over an extended period and the reduced surface expression of the B-cell receptor 
(BCR) that occurs as B cells differentiate into plasmablasts and increase their expression of immu-
noglobulins (Igs), which are destined for secretion [33]. The loss of cell surface BCR expression 
on plasmablasts is more pronounced for IgG than IgA, the predominant isotype at steady state 
(Figure 1). There is also evidence that the ratio of surface and intracellular expression of Igs differs 
with conditions and tissue origin [33]. Nonetheless, we and others have used flow cytometry to 
identify and quantify antigen-specific plasmablasts without the need to perform intracellular 
staining [27, 30, 34]. 
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Figure 1. Plasmablast responses to SARS-CoV-2 vaccination. The flow cytometry plots are 
representative of immunoglobulin isotype cell-surface staining of plasmablasts at baseline and at day 10 
after the first dose and day 6 after the second dose of the mRNA-1273 vaccine. The plots illustrate that IgA 
is the dominant isotype at baseline (steady state) while IgG dominates after vaccination, IgM remains low 
and stable over time, and the cumulative distribution of the 3 isotypes is ~100% at each timepoint. The 
graphical depiction on the right illustrates the kinetics for total (antigen non-specific) and spike-specific 
plasmablasts following doses 1 and 2 of the mRNA-1273 vaccine. The non-specific response precedes the 
spike-specific response after dose 1, while both are elicited intensely albeit more transiently after dose 2 
and dominated by IgG for both spike-specific and non-specific responses.

Several approaches can be taken to verify the experimental design; in our study we confirmed that 
~95% of all plasmablasts had an accounted Ig isotype [30], IgA, IgG, or IgM (Figure 1). Verifica-
tion also included the comparison of 2 methods of plasmablast quantification, one based on flow 
cytometry and the other by ELISPOT, as well as the comparison of isotype distribution with and 
without permeabilization [30]. 

Having determined that infection or vaccine-induced SARS-CoV-2-specific plasmablasts in 
the blood could be quantified by spectral flow cytometry, we proceeded with an unbiased and 
integrated approach (explained in detail below) to longitudinally evaluate primary antibody, 
plasmablast, and MBC responses to the 2-dose mRNA-1273 in our cohort of 21 SARS-CoV-2-
naive healthy adults [30]. A detectable rise in total (SARS-CoV-2 spike nonspecific) IgG and IgA 
plasmablasts was observed approximately 7 days after the first vaccine dose and peaked around 
day 10 (illustrated in Figure 1 and clusters C9 and C13 respectively in Figure 2). Plasmablasts that 
were specific for SARS-CoV-2 spike protein could be detected by day 10 and peaked after day 
14, the last timepoint evaluated after dose 1 [30]. Both levels of spike-specific and non-specific 
plasmablasts had returned to baseline when the second dose was administered at day 28. The 
plasmablast response to the second dose was rapid, intense, and short-lived, with a peak occur-
ring 5-7 days after vaccination (illustrated in Figure 1). We then addressed whether vaccine-in-
duced plasmablasts measured in the peripheral blood were predictive of the antibody response 
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measured in the serum. We found spike non-specific plasmablasts at days 10 and 14 after dose 1, 
and spike-specific plasmablasts at days 7 and 10 after dose 2 were correlated with both IgG and 
IgA antibody titers measured at 2 and 6 months after vaccination [30]. While few studies have 
established similar correlations, it may be because most studies have been performed on cryopre-
served cells at relatively few timepoints. The observation that frequencies of circulating plasmab-
lasts are predictors of the antibody response to SARS-CoV-2 vaccination could reflect overall 
immune competency and/or that plasmablasts are precursors of plasma cells that home to the 
bone marrow and secrete the antibodies, which are then measured in serum [35]. Recent findings 
on the dynamics of influenza vaccine-induced B-cell and antibody responses provide evidence for 
a direct link between plasmablasts, bone marrow plasma cells, and serum antibodies [36].

Memory B cells 
While the concept of immunological memory, the ability to rapidly respond to a previously 
encountered pathogen through the generation of affinity-matured MBCs, is straightforward, the 
reality of identifying and tracking MBCs is far more challenging. Since the identification almost 
25 years ago of CD27 as the canonical or conventional marker of human MBCs [37, 38], several 
phenotypically distinct populations of MBCs have been identified [39]. Their numbers and rela-
tive distribution can vary with time, condition, and anatomical location, all of which suggest that 
the heterogeneity of MBCs also reflects distinct functionalities in response to pathogens [40, 41]. 
With the development of new technologies and computational tools that can handle the acquisi-
tion and analysis of large datasets [29], several recent studies have provided new insights into the 
complexity and diversity of B-cell populations, as well as clarity regarding MBCs involved in the 
generation of immunological memory [31, 42]. For example, while the existence of MBCs that 
lack expression of CD27 has been known for some time [43–45], only recently have combinations 
of markers such as CD200, CD45RB, CD11a, and CD11c helped discriminate between the various 
conventional and nonconventional human MBCs [31, 42]. When combined with analyses of BCR 
mutational burden, integrated approaches can also provide insight into the positioning of various 
MBC populations along a maturational trajectory, such as the progressive accumulation of muta-
tions from CD27-CD45RB- to CD27-CD45RB+ to CD27+CD45RB-/+ MBCs [31]. However, while 
much progress has been made, certain markers may have a more nuanced profile than has been 
assumed from past experience. For example, MBCs are often defined as CD38- or CD38lo [31, 46]. 
However, while transitional B cells and plasmablasts express distinctly high levels of CD38 and all 
naive B cells express intermediate levels of CD38, MBCs can express a wide range of CD38 inten-
sities, from the very low intensities on nonconventional (CD11c+CD21loCD27+/-) MBCs to variable 
yet distinct intensities on conventional (CD11c-CD21+CD27+) MBCs [30, 47]. Another caution is 
using the BCR mutational burden to assess the maturational stage of an MBC population that has 
a heterogeneous or partially undefined Ig isotype profile, especially given that Ig isotype is a strong 
determinant of mutational burden [48]. In the example given above, MBCs, defined by expres-
sion of CD27 and CD45RB, had different distributions of Ig isotype which could have contributed 
to the differences in mutational burdens reported [31]. Nonetheless, integrated multi-omic ap-
proaches are providing new means of classifying B cells that will help advance our understanding 
of MBCs, how they are generated and how they contribute to immunological memory. 
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In our flow cytometric approach to evaluating B-cell signatures of the primary antibody response 
to the 2-dose SARS-CoV-2 mRNA-1273 vaccine, we designed a panel that included markers for 
distinguishing between conventional and non-conventional MBCs (CD11c, CD21, and CD27), as 
well as the major Ig isotypes (IgD, IgM, IgG, and IgA). The reasoning for including all 4 Ig iso-
types was 2-fold: to compare cellular Ig isotypes with their corresponding spike-binding antibody 
titers and to extend analyses of manually defined populations to unsupervised clustering that 
would capture a broad spectrum of phenotypes [30]. Given the potential pitfalls of using dimen-
sional reduction and clustering algorithms to generate immune signatures [29], the inclusion of 
the 4 major Ig isotypes provided a means of verifying clusters based on canonical rules. The most 
abundant clusters should be naive B cells expressing higher intensities of IgD than IgM, and there 
should be few and minimally abundant clusters that contain incompatible isotypes; for example, 
a cluster should not contain both unswitched (IgD/M) and switched (IgG or IgA) isotypes or 
IgG with IgA. We also found that a 30-cluster setting was ideal for generating a wide spectrum of 
distinct phenotypes without compromising visual clarity or quantitative analyses. Having ascer-
tained that our clustering met these metrics and was consistent with manually defined popula-
tions, we then evaluated the temporal dynamics of each cluster in response to the 2 vaccine doses 
by measuring fluctuations of each cluster (the non-specific response) and of spike-bound cells 
(the antigen-specific response) within each cluster [30]. This approach identified several MBC 
clusters that fluctuated over time after each vaccine dose, and a number of these clusters were 
found to correlate with antibody titers at months 2 and 6 post-vaccination. An early spike-specific 
correlate of both timepoints was cluster 6 (C6; illustrated in Figure 2), an IgG-switched CD38+ 
MBC lacking expression of CD27 that has been described as an early-response MBC [49]. Nota-
bly, frequencies at baseline of dose 2 of spike-specific cells in C6 correlated with the IgG and IgA 
antibody responses at months 2 and 6 post-vaccination. One might ask why an IgG-expressing 
MBC like C6 would correlate with IgA antibodies? It is likely that these correlates are indicative 
of an overall responsiveness rather than a cause-effect relationship. In this regard, C6 was among 
several clusters, both switched and unswitched MBCs, that were early (dose 1) antigen non-spe-
cific correlates of the IgG spike-specific antibody response [30].

Our study on B-cell signatures of antibody response to mRNA vaccination included several MBC 
subsets. Among the 30 clusters generated by the unsupervised analysis, 18 were MBCs, consistent 
with their heterogeneous nature and a reflection of the B-cell markers chosen to study the MBC 
response. Among the 18 MBC clusters, 9 were classified as conventional, as defined by MBCs that 
express both CD21 and CD27, then further annotated as unswitched or IgA or IgG switched, and 
as being either CD38+ or CD38-, consistent with another recent study [47]. The remaining 9 MBC 
clusters were classified as nonconventional, either because they lacked expression of CD27 or had 
profiles associated with activation (CD20hiCD21loCD11c+). Among these were MBCs we have 
previously described in the context of persistent HIV viremia and named activated (CD27+) or 
tissue-like (CD27-) [45], although the term atypical is now commonly used to refer to both collec-
tively [50]. Atypical MBCs accounted for 6 clusters: either unswitched or IgA or IgG switched, and 
among each, they were further delineated by the expression of CD27 [30]. Notably, none of these 
atypical MBCs expressed CD38, consistent with previous reporting [51]. Several of the atypical 
MBC clusters underwent spike-specific and non-specific fluctuations following vaccination. How-
ever, while several atypical MBC clusters correlated antigen-nonspecifically with antibody titers 
at month 2, few were spike-specific correlates, despite one of these clusters, C5, an IgG-expressing 
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atypical MBC comprising a large fraction of the spike-specific MBC response days 7-14 after dose 
2 [30], and depicted in Figure 2. Thus, it was the non-specific overall activation of atypical MBCs 
that was predictive of the antibody response. In contrast, a strong spike-specific MBC predictor of 
antibody responses at both months 2 and 6 post-vaccination was C2 (Figure 2), an IgG-express-
ing resting MBC that also accounted for most of the strong month 6 spike-specific MBC response 
that we and others have described [30, 52]. However, one important caveat to our study is that our 
panel did not include the activation marker CD71, which is strongly induced following vaccination 
or infection [27]. It will be important to include this marker in future studies as it seems to have a 
different expression profile than other markers of activation, such as CD11c and CD95 [31]. 

Figure 2. Kinetics of spike-specific plasmablasts and memory B-cell responses to SARS-CoV-2 
vaccination. The graph depicts cellular responses over time following doses 1 and 2 of the mRNA-1273 
vaccine, with corresponding cluster (C) designations and annotations discussed in the review. The stars 
refer to the timepoints when the indicated spike-specific plasmablast or memory B-cell (MBC) cluster 
correlated with either day 56/month 2 (1 star) or both day 56/month 2 and day 180/month 6 (2 stars) of 
the spike-specific antibody response. Both plasmablast clusters correlated with the antibody response, as 
did the early MBC C6 and the conventional MBC C2 but not atypical MBC C5. Abs, antibodies.

SECONDARY EXPOSURE FROM INFECTION AND/OR VACCINATION 
Since the start of the COVID-19 pandemic in 2020, exposures to SARS-CoV-2 have transitioned 
in rapid succession from primary infection and vaccination alone to secondary combined expo-
sures, and most recently, to multiple combinations of re-infection and/or booster vaccination. 
Given the high transmissibility of the virus and the rapid development and distribution, albeit 
uneven, of vaccines, the number of people worldwide who remain unexposed to SARS-CoV-2 
has been quickly diminishing. This means that there are fewer and fewer people who remain 
immunologically naive to the virus and conversely, there is a growing number of people with 
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diverse types of exposures, whether from infection and/or vaccination. These changing dynamics 
pose both challenges and opportunities; while it is becoming increasingly difficult to understand 
how multiple and varied exposures shape the immune response to SARS-CoV-2, the knowledge 
gained may help understand what sustains protection against rapidly evolving viruses such as 
SARS-CoV-2. Furthermore, much of the knowledge with SARS-CoV-2 is likely to be applicable to 
other current and future viral pathogens.

The term hybrid refers to the type of immunity that arises from a combination of infection and 
vaccination, in either order. While the definition is simple, the reality of tracking and understand-
ing hybrid immunity is far from simple. For example, should we consider infection with other 
coronaviruses as part of hybrid immunity given the evidence that immune responses to SARS-
CoV-2 can be modulated by cross-reactive B-cell and T-cell responses that were acquired prior to 
the pandemic [22, 53]? Exposure histories are important because they can influence the magni-
tude and longevity of subsequent immune responses yet are affected by factors and mechanisms 
that are not well understood. Contributing factors likely include the nature and timing of each 
exposure, and the role of imprinting, the process by which the immune system tends to amplify 
a response to the first version of the pathogen encountered at the expense of subsequent variants 
[54]. We tackle a few of these factors here.

The effect of prior infection on responses to primary vaccination
The first reports on the effects of prior infection on the immune response to vaccination began 
to emerge in the summer of 2021, approximately 6 months after the first SARS-CoV-2 vaccines 
received emergency use approval [55]. Several studies performed during this period demonstrat-
ed that 1 or 2 doses of the mRNA vaccines augmented the magnitude and durability of neutral-
izing antibody titers and increased breadth among serum and memory B-cell derived antibodies 
in people who were previously infected when compared to infected/unvaccinated or uninfected/
vaccinated individuals [56–65]. Of note, however, the second dose was found to provide minimal 
enhancement of antibody and B-cell responses over the first dose in previously infected individ-
uals [58], contrasting with a strong response to a second dose in uninfected individuals [57, 62, 
65]. These findings were early indications that the benefit provided by hybrid immunity may be 
restricted by factors associated with time interval or repeated exposure, as has been shown with 
other vaccines and in animal models [66–68]. A large retrospective study addressing the risk of 
infection also found that a second dose of the BNT162b2 mRNA vaccine in people who were pre-
viously infected did not increase protection from re-infection over the first dose [69]. Regarding 
time interval between doses, several studies on cohorts that have included both uninfected and 
previously infected individuals have shown that an extended interval between the first 2 doses 
of the mRNA vaccines increases the magnitude and breadth of B-cell and/or antibody responses 
when compared to the standard 3-to-4-week interval [62, 70–75]. However, while immunological 
benefits of an extended dosing interval have clearly been demonstrated, evidence for protection 
from infection or severe disease is more nuanced. In another large retrospective study demon-
strating enhanced protection from vaccination after prior infection, a prolonged interval between 
vaccine doses did not contribute to added protection in either uninfected or previously infected 
participants [76]. However, other, albeit smaller and less definitive studies have demonstrated in-
creased protection with extended intervals [73, 77], consistent with health-impact modeling [78], 
and changes in guidelines on dosing interval [79]. Several factors may contribute to differences in 
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predicted or observed outcomes, including demographics, period of study, circulating variants, 
levels and sources of pre-existing immunity, as well as differences in vaccine efficacy [78, 80]. 

Hybrid immunity in context of repeated exposures
As the number of exposures to SARS-CoV-2, either from vaccination, infection, or combinations 
of these increases, one factor that should be considered in trying to understand the cumulative 
effect of exposures on immunity and protection is whether the source (vaccine or virus) of the ex-
posure matters. In the early phase of the pandemic, clinical studies on the 2-dose mRNA vaccine 
regimens showed similar or higher titers of antibodies in vaccinees when compared to convales-
cent controls [81, 82]. Subsequent epidemiological studies suggested that protection from infec-
tion was superior after vaccination than infection [83, 84]. However, more recent studies have 
shown the reverse, that protection from infection is greater from a previous infection than from 
vaccination alone [85–88]. This reversal may reflect the changing nature of the pandemic and the 
different therapies and modalities used to treat people with COVID-19, although the risks of poor 
outcomes from infection continue to far outweigh those from vaccination [89]. It should also be 
noted that recovery from natural infection has at least 2 inherent advantages over current SARS-
CoV-2 vaccines: a longer period of persisting antigen that can drive greater affinity maturation 
and breadth of MBCs [90], and the induction of an early, more robust and possibly more effective 
IgA mucosal response [91, 92]. 

As vaccination rates have increased, studies have shifted from considering effects from either 
infection or vaccination alone on immunity or protection to focusing on how the combination 
of infection and vaccination compares to vaccination or infection alone, although the latter is 
increasingly rare. Several large epidemiological studies have shown that protection from symp-
tomatic infection is highest among people who were previously infected and vaccinated [76, 87, 
93, 94]. A synergistic effect involving imprinted cellular responses may explain the enhanced 
magnitude of antibody responses and breadth for protection against emerging variants that has 
been described with hybrid immunity [95, 96]. However, the benefits from hybrid immunity may 
diminish as the number of vaccine doses increases. Studies have shown that infection followed 
by 1 dose of the mRNA vaccine induces higher frequencies of spike-specific plasmablasts and/
or MBCs compared to 2 doses of vaccine alone [52, 59, 97]. However, as mentioned above, anti-
body and B-cell responses to a second vaccine dose did not increase over the first dose in people 
who were previously infected [57, 58, 62, 65]. Notably, differences in frequencies of spike-specific 
MBCs between uninfected and prior-infected diminished 2-3 months after vaccination [97], and 
by month 6 after vaccination, frequencies of spike-specific MBCs and MBC responses to variants 
of concern were similar between previously infected and uninfected vaccinees [52]. However, one 
advantage of hybrid immunity may be the level of somatic hypermutation, which at 3-4 months 
post-vaccination was higher in the prior-infected than uninfected group [52]. Other studies have 
shown similar outcomes [59, 95]; however, one caveat is that these analyses were performed at 
relatively early timepoints after vaccination.

The limited benefit of the second dose of an mRNA vaccine in previously infected individuals 
may be due to repeated exposure to antigen and/or the short time interval between doses. While 
repeated exposure to antigen under controlled conditions has been shown to induce potent, 
broad, and sustained immunity [98], these conditions are difficult to control and can lead to 
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suboptimal responses. Antibodies from a previous exposure can mediate feedback inhibition by 
limiting antigen access during germinal center reactions [99], and repeated antigen exposure can 
create bottlenecks and restrict antibody diversity [66]. Diminished antibody responses to influ-
enza vaccination have been linked to repeated vaccination and high pre-existing antibody titers 
[67, 68]. A similar mechanism may also be restricting B-cell responses to SARS-CoV-2 vaccines 
in people who have received passive administration of SARS-CoV-2 antibodies [100]. Further-
more, atypical MBCs, which are induced by SARS-CoV-2 infection and vaccination [30, 97], have 
been shown under conditions of chronic antigen stimulation to over-express inhibitory receptors 
and diminish their responsiveness to further stimulation [45]. In a recent study on malaria, it was 
proposed that while atypical MBCs are induced following exposure to the pathogen through in-
fection or vaccination, repeated boosting favors atypical over conventional MBCs [101]. Thus, the 
outcome of MBC recall responses in the context of repeated exposures remains difficult to pre-
dict, posing challenges to the goals of generating sustained protective immunity against current 
and future SARS-CoV-2 variants and other pathogens [102, 103].

We recently evaluated the effect of infection on antibody and B-cell responses to a booster (third) 
dose of the mRNA vaccines in a cohort including people who were infected prior to or after vacci-
nation or who remained uninfected throughout the 2-month study period [104]. Similar to other 
studies [34], we found that a third dose in uninfected individuals induced robust and broad anti-
body and B-cell responses that were increased in people infected post-boost yet muted in those who 
were infected prior to receiving their booster vaccine. The antibody and B-cell responses induced 
were most restricted in those individuals who received their vaccine closest to their time of infec-
tion. This abrogation of antibody and B-cell responses to a third dose of mRNA vaccine by recent 
SARS-CoV-2 infection is consistent with a recent report at 7 days post-vaccination [105], and the 
blunted responses observed after the second dose in previously infected people [57, 58, 62, 65].

Several possibilities could explain the unresponsiveness of B cells to a third vaccine dose after a 
recent SARS-CoV-2 infection. First, we considered anergy or exhaustion that has been described 
for CD21lo B cells (reviewed in [54]), which are expanded during SARS-CoV-2 infection [18, 
96, 97]. Under conditions of chronic activation, these CD21lo B cells show signs of activation in 
vivo yet are refractory to further stimulation ex vivo [106], a phenomenon that has been termed 
post-activated anergy or exhaustion [107]. A hallmark of anergic B cells is failure to respond to 
BCR stimulation, as measured by calcium flux or phosphorylation of signaling molecules [108]. 
We focused on spleen tyrosine kinase (SYK) and the downstream phospholipase Cg2 (pPLCg2), 2 
signaling molecules that undergo coordinated and rapid phosphorylation following BCR stimu-
lation yet have profiles that distinguish different MBC subsets [31], and become dysregulated in 
severe cases of SARS-CoV-2 due to decreased expression of inhibitory receptors [109]. When we 
evaluated the response to stimulation among SARS-CoV-2 recently infected and uninfected indi-
viduals, we found that BCR-mediated signaling among spike-specific MBCs was higher at base-
line in the individuals who were previously infected when compared to those who were uninfect-
ed, although levels were similar between the 2 groups at day 60 post-vaccination. Furthermore, 
we found that the fold difference in BCR signaling between baseline and day 60 was correlated 
with the interval between infection and vaccination [104]. 

The differences we observed in B-cell signaling between prior-infected and uninfected individ-
uals were at baseline, prompting us to consider whether this reflected differences in phenotypes 
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of spike-specific MBCs at this timepoint. While we did not find that baseline frequencies of 
spike-specific CD21lo atypical MBCs differed between prior-infected and uninfected groups, we 
did find a significantly higher frequency of CD21+CD27lo MBCs in the uninfected group [104]. 
Notably, these MBCs have been associated with a durable response to influenza vaccination [110], 
and more recently to SARS-CoV-2 vaccination [111, 112]. They are also similar in phenotype to 
the early MBC C6 that we found to correlate with primary immunization antibody responses [30] 
and depicted in Figure 2. In the recent study, we found that CD21+CD27lo MBCs were less respon-
sive to BCR stimulation than their CD21+CD27+ counterpart, providing an explanation for why 
baseline B-cell signaling was higher in the prior-infected group where CD21+CD27+ MBCs were 
enriched [104]. We do not have a mechanistic explanation for the differences in BCR signaling and 
there may be other factors contributing to the muted response of B cells to a third vaccine dose in 
people who were recently infected with SARS-CoV-2. Our findings do not address whether these 
differences were driven by infection per se or any source of repeated antigenic stimulation. None-
theless, our findings may help provide guidance on when booster vaccines should be administered. 

CONCLUSIONS
The primary immune response to SARS-CoV-2 mRNA vaccines engages both plasmablasts and 
MBCs that can be evaluated simultaneously using high-dimensional flow cytometry. Given the 
heterogeneity of the responding B cells and their fluctuations over time, longitudinal studies that 
track immune responses should be performed using analytical tools that can allow for maximum 
uniformity and meaningful discovery. While there is a growing number of methods and algorithms 
being developed for projecting and clustering large sets of data, these applications are only useful if 
the flow cytometry is performed adequately. Beyond these considerations, there remains ongoing 
challenges of describing and discussing cluster-based complex datasets in ways that are concise and 
informative. Secondary immune responses to SARS-CoV-2 are best evaluated by considering expo-
sures from both infection and vaccination. While it is clear that hybrid immunity generated from 
both infection and vaccination is superior to either alone, there is mounting evidence that repeated 
exposures may restrict antibody and B-cell responses. This evidence comes from studies that re-
vealed muted immune responses and limited protection from a second dose of the primary 2-dose 
mRNA vaccines in people who were previously infected, and recent findings of a similarly muted 
response to booster vaccines. However, many of these observations have been based on small stud-
ies and clearly there is more to learn on the effect of timing between vaccine doses and the various 
factors that can impact immunity and protection against SARS-CoV-2 infection or re-infection.
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