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ABSTRACT

Reprinted with permission, Cleveland Clinic Foundation ©2022. All Rights Reserved.

Background: Barriers are commonly installed in workplace situations where physical distancing 
cannot be maintained to reduce the risk for transmission of respiratory viruses. Although some 
types of barriers have been shown to reduce exposure to aerosols in laboratory-based testing, 
limited information is available on the efficacy of barriers in real-world settings. 

Methods: In an acute care hospital, we tested the effectiveness of in-use plexiglass barriers in re-
ducing exposure of staff to aerosolized particles. A nebulizer was used to release 5% NaCl aerosol 
1 meter from staff members with and without the barrier positioned between the point of aerosol 
release and the hospital staff. Particle counts on the staff side of the barrier were measured using 
a 6-channel particle counter. A condensed moisture (fog) generating device was used to visualize 
the airflow patterns. 

Results: Of 13 in-use barriers tested, 6 (46%) significantly reduced aerosol particle counts detect-
ed behind the barrier, 6 (46%) reduced particle counts to a modest, non-significant degree, and 1 
(8%) significantly increased particle counts behind the barrier. Condensed moisture fog accumu-
lated in the area where staff were seated behind the barrier that increased particle exposure, but 
not behind the other barriers. After repositioning the ineffective barrier, the condensed moisture 
fog no longer accumulated behind the barrier and aerosol exposure was reduced. 

Conclusion: In real-world settings, plexiglass barriers vary widely in effectiveness in reducing 
staff exposure to aerosols, and some barriers may increase risk for exposure if not positioned cor-
rectly. Devices that visualize airflow patterns may be useful as simple tools to assess barriers. 
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INTRODUCTION
Workers in healthcare and non-healthcare settings are at risk of acquiring infection with severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory viruses [1–5]. In 
work situations where physical distancing cannot be maintained, barriers are often installed to 
reduce the risk for viral transmission [6–8]. In laboratory-based testing, some types of barriers 
have been shown to reduce exposure to aerosols [9, 10]. For example, we found that solid physical 
barriers were effective in reducing contamination with an aerosolized benign virus, water soluble 
dye, or fluorescent microspheres in laboratory simulations, but openings in the barriers resulted 
in loss of efficacy [9]. However, there is concern that barriers that are not carefully installed have 
the potential to hinder good ventilation resulting in increased aerosol exposure [1, 6]. To reduce 
the risk that barriers might hinder ventilation, the Centers for Disease Control and Prevention 
(CDC) recommends that airflow distribution testing with tracer “smoke” or handheld fog genera-
tors should be conducted [1]. It is suggested that if such testing identifies stagnant air pockets, the 
barrier should be redesigned or reoriented [1]. 

Although barriers have been evaluated in laboratory settings, limited information is available on 
their efficacy in real-world settings. Therefore, we examined the effectiveness of in-use plexiglass 
barriers in reducing exposure of hospital staff to aerosolized particles. Because ventilation could 
have an impact on the efficacy of barriers, we also conducted simulations to assess the effective-
ness of a barrier in a non-ventilated room.

METHODS

Assessment of In-Use Barriers 
In an acute care hospital, we tested the effectiveness of 13 in-use plexiglass barriers in reducing 
exposure of staff to aerosolized particles. The barriers ranged in size from width 76.2 cm x height 
71.1 cm to width 76.2 cm x height 76.2 cm. All the barriers had an opening to pass items that 
ranged in size from 155.1 cm2 to 762.0 cm2. 

A Preval sprayer (Nakoma Products, LLC) aerosol-based spray system was used to release 6 mL 
of 5% sodium chloride (NaCl) over 10 seconds; based on particle count readings, the device 
disperses predominantly 0.3 µm to 5-µm droplets (authors’ unpublished data). In preliminary 
experiments, the impact of barriers was similar for the 10-second aerosol release with the Preval 
aerosol-based spray system and a 3-minute release of aerosol with a nebulizer (data not shown). 
The aerosol was released both with and without the barriers in place with 1 meter between the 
points of aerosol release and detection (30 cm from aerosol release point to the barrier plus 70 cm 
from barrier to position of the personnel). The aerosol was released at a height of 1.7 meters and 
directed toward the position where personnel would be seated behind the barrier. A 6-channel 
particle counter (Fluke 983, Fluke) was positioned in the location where personnel would be sit-
ting at a height of 1.3 meters from the floor. The heights of the particle release and detection were 
chosen based on observations that patients usually stood behind the barriers while personnel 
were usually seated. Particle count readings of 1 μm- to 10 μm-sized particles were recorded for 2 
minutes after particle release; particle counts consistently returned to baseline levels by 2 minutes 
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after release in ventilated areas. The assessments were repeated in triplicate for each barrier, both 
with and without the barrier in place. 

For each barrier, a condensed moisture (fog) airflow visualizer (CBreeze, Degree Controls, Inc.) 
was used to assess the direction of airflow with and without the barrier in place. The condensed 
moisture was released at the points where the aerosol was released in front of the barrier and at 
each side of the barrier. For those barriers that significantly increased personnel exposure to the 
NaCl aerosol, additional assessments of airflow were conducted using an anemometer (AN200, 
Extech Instruments) to measure airflow speed and direction with and without the barrier in 
place. In addition, for barriers that increased personnel aerosol exposure, we evaluated whether 
repositioning the barrier would reduce personnel exposure.

Simulations to Assess Barrier Effectiveness in a Non-Ventilated Room
Ventilation systems create airflow patterns that can potentially facilitate transmission of respi-
ratory viruses and that may impact the efficacy of barriers [1, 11, 12–15] . Because all the in-use 
barriers tested were in well-ventilated settings, we conducted additional simulations to assess 
the effectiveness of a barrier in a non-ventilated room (41.7 cubic meters). We hypothesized that 
barriers would be less effective in non-ventilated rooms because aerosol particles might disperse 
throughout the room and persist, thereby obviating the benefit that the barrier might provide in 
reducing initial exposure after aerosol is generated.

The efficacy of the barrier was tested as described previously. The aerosol was released both with 
and without a 60 cm x 76 cm barrier with no opening in place. A Preval sprayer aerosol-based spray 
system was used to release 6 mL of 5% NaCl over 10 seconds directed toward the barrier. Particle 
counts of 1 μm- to 10 μm-sized particles were recorded every 30 seconds for 2 minutes after aerosol 
release, every minute for 10 minutes after aerosol release, and at 20 and 30 minutes. The total dis-
tance between aerosol release and particle count sampling was 1 meter as described previously. 

Data Analysis
For in-use barriers, we compared the particle counts detected behind the barrier over 2 minutes 
after particle release with and without the barrier present. A 2-way analysis of variance (ANOVA) 
was performed, comparing with versus without the barrier present for each barrier. A square root 
transformation of accumulated particles was performed to meet model assumptions. Post-hoc 
contrasts within barriers were assessed. As we considered each barrier to be independent and 
wished to control type I error at the barrier level, no post-hoc correction was performed. For the 
simulations in the non-ventilated room, we compared the peak particle counts detected at 30 
seconds after aerosol release and the cumulative particle count detected behind the barrier over 
30 minutes with versus without the barrier present. Data were analyzed using R version 4.1.3 soft-
ware (R Foundation for Statistical Computing).

RESULTS

In-Use Barriers
Of 13 in-use barriers tested, 6 (46%) significantly reduced aerosol particle counts detected behind 
the barrier, 6 (46%) reduced particle counts to a modest, non-significant degree, and 1 (8%) sig-
nificantly increased particle counts behind the barrier (Figure 1). For all barriers, aerosol particle 
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counts peaked at 30 seconds after release and rapidly decreased to low levels at or close to baseline 
by 1 to 2 minutes after release. Figure 2 shows aerosol particles detected over 2 minutes for 3 bar-
riers, including the ineffective barrier and an effective and minimally effective barrier.  

Figure 1. Accumulated number of 5% sodium chloride aerosol particles detected over 2 minutes 
with versus without a plexiglass barrier in place. The aerosol particles were released at 91 cm from the 
barrier. Average results for 3 experiments are shown. Error bars represent standard error. Effective barriers 
significantly reduced particle exposure; minimally effective barriers reduced exposure but not significantly; 
the ineffective barrier resulted in a significant increase in exposure. 

Figure 2A. Effective barrier. 
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Figure 2B. Minimally effective barrier.

 

Figure 2C. Ineffective barrier.

Figure 2. Number of 5% sodium chloride aerosol particles detected over 2 minutes with versus 
without a plexiglass barrier in place for 3 typical barriers, including an effective, minimally effective, 
and ineffective barrier. The aerosol particles were released at 91 cm from the barrier. Average results for 3 
experiments are shown. Error bars represent standard error. 
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Figure 3. Pictures of 3 of the barriers tested. The red rectangles outline the location of openings of the 
barriers and the green lines outline the outer borders of the barriers. Barrier 2 is width 30” x height 28” 
with an opening of width 30” x height 4”. Barriers 7 and 10 are width 30” x height 30” with an opening of 
width 12” x height 2”. 

For the 6 barriers that significantly reduced aerosol particle exposure, the closest incoming or 
outgoing air vents were positioned on the ceiling on the patient side. For the 6 barriers that re-
duced particle counts only modestly, the closest air vents were positioned on the personnel side 
of the barrier. Condensed moisture fog released on the patient side initially flowed toward the 
nearest outgoing or incoming vent (ie, incoming air vents produced currents that initially pulled 
air toward the vent with subsequent movement to outgoing vents). Figure 3 provides pictures of 3 
of the barriers, including an effective, minimally effective, and ineffective barrier. 

The ineffective barrier that increased personnel exposure to particles had a unique ventilation 
system with a large outgoing air vent positioned behind the barrier on the side wall; all other 
outgoing vents were positioned on the ceiling. Without the barrier present, the accumulated par-
ticles detected behind this barrier were substantially lower than for the other settings without the 
barrier, potentially due to the unique outgoing vent with rapid outflow of aerosol particles. With 
the barrier in place, the condensed moisture fog flowed around the sides of the barrier and then 
into the space immediately behind the barrier. After pooling behind the barrier, the condensed 
moisture fog flowed to the outlet air vent positioned on the side wall. 

Anemometer readings demonstrated that the presence of the barrier resulted in an area of low 
airflow immediately behind the barrier with rapid airflow on each side of the barrier. Figure 4 
shows the airflow readings with versus without the barrier in place and a video that demonstrates 
movement of the condensed moisture fog into the space immediately behind the barrier. Reposi-
tioning of the personnel desk plus barrier 3 meters laterally resulted in the barrier being effective 
in reducing personnel exposure to aerosol particles. 

Simulations to Assess Barrier Effectiveness in a Non-Ventilated Room
Figure 5 shows the number of particles detected in the non-ventilated room over 10 minutes both 
with and without the barrier in place. The barrier was effective in reducing initial peak exposure 
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to aerosol particles (P<0.05). However, in the absence of ventilation, counts of aerosol particles 
remained elevated in the room throughout the 30-minute air sampling period, and total aerosol 
particle exposure over 30 minutes was not significantly different with versus without the barrier 
present (P=0.18). The aerosol particle counts were 30,082 at 6 minutes, 25,123 at 20 minutes, and 
23,647 at 30 minutes. 

 

 

Figure 4A.

 

Figure 4B. 

Figure 4. Airflow readings with versus without the plexiglass barrier in place for the 1 barrier (#10) that 
resulted in increased aerosol particle exposure (A) and a video demonstrating movement of condensed 
moisture fog into the space immediately behind the ineffective barrier (B). For the video illustration, the 
fog-generating device was placed closer to the edge of the barrier than the point of aerosol release because that 
provided a clearer illustration as the fog dissipated less than when released at a greater distance. 
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Figure 5. Detection of 5% sodium chloride aerosol particles behind a plexiglass barrier over 30 
minutes after release with versus without a plexiglass barrier in place in a non-ventilated room. The 
aerosol particles were released at 91 cm from the barrier. Average results for 3 experiments are shown. 
Error bars represent standard error. 

DISCUSSION
Although barriers are commonly installed in workplaces, there is controversy regarding their effi-
cacy and concern that some barriers could be harmful due to disruption of normal ventilation [1]. 
However, little real-world evidence has been available on the efficacy of barriers. In the current 
study, we demonstrated that in-use plexiglass barriers in a hospital varied widely in effectiveness 
in reducing exposure of personnel to aerosols, and one barrier increased the risk for exposure. 

Our results provide support for the CDC recommendation that devices that visualize airflow 
patterns should be used to assess barriers and guide repositioning if adverse effects on airflow are 
identified. No condensed moisture fog accumulated behind barriers that reduced aerosol particle 
exposure. However, for the one barrier that increased exposure to aerosol, condensed moisture 
fog testing demonstrated movement of air around the barrier and into the area where personnel 
were sitting. After repositioning the barrier, the condensed moisture fog no longer pooled behind 
the barrier and aerosol exposure was reduced. In general, positioning of vents in relationship to 
the barriers appeared to impact effectiveness (ie, for more effective barriers the closest incoming 
or outgoing air vents were positioned on the ceiling on the patient rather than personnel side). 
However, visualization of airflow patterns is needed given the wide variety of barrier and vent 
configurations in real-world settings.
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The in-use barriers in our study were all in ventilated areas. The simulations completed in the 
non-ventilated room suggest that barriers may be much less effective in areas with poor venti-
lation. In the non-ventilated room, the barrier reduced initial aerosol particle exposure, but not 
subsequent exposure as the aerosol particles disseminated throughout the room. 

In our previous laboratory study, we found that barriers with openings were significantly less ef-
fective in reducing contamination with an aerosolized benign virus, water soluble dye, or fluores-
cent microspheres [9]. However, in the current study we found that several barriers with openings 
were effective in reducing exposure to aerosol particles. One potential explanation for the differ-
ing results is that the aerosol particles were released at a height of 1.7 meters in the current study 
based on observations that patients typically stood behind the barrier versus 1.3 meters in the 
previous study. The higher release point might have reduced the likelihood that aerosol particles 
would transfer through the openings, which were typically at waist height. Because all the in-use 
barriers had openings, we cannot exclude the possibility that barriers with no openings would 
have been more effective. However, there was no obvious correlation between the size of the 
opening and effectiveness of the in-use barriers. For the minimally effective and effective barriers, 
the average opening size was 226.52 cm2 (range, 60.96 cm2 and 304.8 cm2) and 424.18cm2 (range, 
304.8 cm2 and 1,325.88 cm2). The opening of the ineffective barrier was 69.96 cm2. 

Our study has some limitations. The assessments performed cannot replicate all factors that may 
affect barrier efficacy in real-world settings. The in-use barrier testing was conducted in one 
building with good ventilation and only 13 barriers were assessed. Additional testing is needed 
in community settings with suboptimal ventilation. We did not assess the efficacy of barriers in 
comparison to or in combination with measures such as facemasks, increased ventilation rates, 
and portable air cleaners [16]. Finally, the aerosol particles released by the Preval sprayer aero-
sol-based spray system may differ in number and characteristics from those released by people 
with viral respiratory infections. Previous studies have demonstrated that a cough produces ap-
proximately 3,000 droplets, a sneeze releases an estimated 40,000 droplets, and loud speaking may 
release thousands of droplets per second [17–19]. 
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