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ABSTRACT
Natural killer cells are a diverse group of innate lymphocytes that are specialized to rapidly re-
spond to cancerous or virus-infected cells. NK cell function is controlled by the integration of 
signals from activating and inhibitory receptors expressed at the cell surface. Variegated expres-
sion patterns of these activating and inhibitory receptors at the single cell level leads to a highly 
diverse NK cell repertoire. Here I review the factors that influence NK cell repertoire diversity and 
its functional consequences for our ability to fight viruses. 
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INTRODUCTION
Natural killer (NK) cells are innate lymphocytes that can rapidly eliminate infected or tumor cells 
and modulate immune responses through the secretion of cytokines and chemokines. First iden-
tified in mice and humans in the 1970s on the basis of their ability to kill tumor cells, they form a 
critical first line of defense, capable of acting within minutes and without the need for priming [1, 
2]. NK cells are now recognized to be part of the larger family of innate lymphoid cells (ILCs) [3], 
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though this review will focus exclusively on “classical” NK cells in humans. A single NK cell can 
act as a serial killer—engaging multiple targets in sequence over a rapid time scale [4]. NK cells 
may help prevent cancer; individuals with high NK cell activity are less likely to develop cancer 
[5]. The important role of NK cells in cancer recognition, coupled with their remarkable speed 
and potency, has led to excitement about the development of immunotherapies harnessing NK 
cells to attack cancer [6-9]. 

The importance of NK cells for fighting viral infections was revealed by Biron and colleagues’ 
description of severe herpes virus infectious in NK cell-deficient individuals [10]. The associa-
tion between NK cells and viral susceptibility has held true for additional immunodeficiencies in 
which NK cell dysfunction is a prominent feature, including X-linked lymphoproliferative syn-
drome (XLP) and X-linked immunodeficiency with Mg2+ defect, EBV infection, and neoplasia 
(XMEN) [11-16]. These findings, combined with the recent descriptions of NK cells with memo-
ry-like capacity [17-22], has raised the possibility that NK cells might be an important component 
of new antiviral vaccine or immunotherapy strategies. However, for these vaccine or immuno-
therapy approaches to be a success, we must first understand which NK cells to harness and how 
to best tune their activity to attack the appropriate pathogen. This requires consideration of the 
diversity of the human NK cell repertoire, and how, within that diverse repertoire, we can select 
the NK cell activities we desire. 

NK CELLS: A DIFFERENT KIND OF DIVERSITY
Diversity is an intrinsic and critical characteristic of the immune system, aiding in our ability to 
recognize and eliminate a wide variety of potential pathogens. Diversity is often attributed pri-
marily to T and B cells, lymphocytes that somatically rearrange their antigen-specific receptors 
to provide billions of potential specificities [23]. During B and T lymphocyte development, there 
are checks and balances in place to avoid autoreactivity while generating flexibility and a vast 
array of specificities. Natural killer cells, on the other hand, do not have somatically rearranged 
antigen-specific receptors. They are therefore tasked with responding to the vast array of potential 
pathogens through germline-encoded receptors, requiring different pathways to provide a re-
sponse that is rapid, tunable, and self-tolerant.

To achieve this, NK cells generate diversity through two primary mechanisms: the first based on 
genetic diversity within killer immunoglobulin-like receptor (KIR) genes, and the second based 
on the assortment of receptors at the cell surface. In humans, KIR are the second most polymor-
phic genes after the human leukocyte antigen (HLA) genes, and individuals differ in their KIR 
gene content [24, 25]. As a result, KIR genes are a major driver of NK cell diversity, which will be 
summarized only briefly here. KIRs consist of two major types of receptors, the inhibitory KIR 
(denoted by an “L” in the name for a long cytoplasmic tail), and the activating KIR (denoted by 
an “S” for a short cytoplasmic tail). Individuals can be sorted into two groups based on their KIR 
genotypes. The KIR A group has primarily inhibitory KIR and either no or one activating KIR, 
while group B has additional activating KIR genes [25]. Inhibitory KIRs recognize HLA, sending 
an “all-clear” signal to prevent the NK cell from lysing the target cell. As a result, KIR are a crit-
ical component of NK cell function, and NK cells are educated (also called licensed or armed) 
through their KIR to be exquisitely sensitive to perturbations in HLA expression [26-28]. As KIR 
and HLA are inherited independently, KIR-expressing NK cells are educated if the KIR encoun-
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ters its cognate HLA ligand during development, or uneducated if the HLA ligand for the KIR 
is absent. The importance of KIR diversity for the NK cell repertoire and its responsiveness has 
been studied and reviewed extensively [22, 25, 29-31]. In particular, a significant body of work 
points to the importance of balancing selection in maintaining divergent KIR haplotypes that 
favor either survival from infectious disease (during times of epidemics) or reproduction (to favor 
recovery) [24, 32]. The critical balance between reproductive needs and protection from infection 
is beautifully highlighted in a series of studies demonstrating how different maternal and pater-
nal KIR/HLA combinations influence reproductive outcome [22, 24, 33-38]. These findings, and 
many others, establish the critical importance of genetics in maintaining NK cell diversity.

Rather than reiterate the importance of the genetic contributions to NK cell diversity, in this re-
view I seek to focus instead on the second major contributor to NK cell diversity: how the assort-
ment of receptors at the cell surface generates NK cell diversity. The phenotypic diversity of NK 
cells is based upon combinatorial expression patterns of activating and inhibitory natural killer 
receptors (NKRs), including KIR and many other genes, with each NK cell capable of expressing 
a different combination of NKRs. Since NK cells integrate signals from this array of activating and 
inhibitory signals, this phenotypic diversity has significant implications for NK cell function. For 
instance, a NK cell with a large number of activating NKRs may be more readily triggered. Thus, 
the phenotype and function of NK cells are tightly linked.

THE MAGNITUDE OF HUMAN NK CELL DIVERSITY
The idea of subsetting NK cells based on phenotypic markers was first proposed by Lanier and 
colleagues in 1983 [39], and since then the number of populations and recognition that they can 
perform distinct functions has steadily increased [40-43]. NK cells are traditionally divided based 
on CD56 and CD16 expression, with CD56brightCD16- NK cells thought to be relatively imma-
ture and specialized for cytokine secretion while the more abundant CD56dimCD16+ NK cells are 
fully mature and primed for killing. In fact, there is significant functional overlap between these 
groups, and intermediate populations of CD56-CD16- NK cells can also arise, particularly in the 
setting of chronic infection [44]. 

In light of their critical importance in distinguishing self from “altered self,” several studies have 
elegantly explored the expression patterns of the major inhibitory receptors: inhibitory KIRs, 
NKG2A, and LILRB1 [45-50]. These studies demonstrated that NK cells express every possible 
combination of the inhibitory receptors they encode, resulting in NK cell subsets with one or 
several inhibitory receptors as well as a significant subset of NK cells lacking inhibitory receptors. 
Further, the education status of these NK cells varies based on the combined KIR and HLA geno-
types, conferring a distinct functional capacity to these NK cell subsets [45-50].

More recently, the advent of cytometry by time-of-flight (CyTOF, also called mass cytometry) 
[51, 52], has allowed us to generate a more complete understanding of the diversity of receptor 
expression patterns on NK cells that includes the activating receptor profiles [50, 53-55]. CyTOF 
is a flow cytometry platform that uses metals instead of fluorophores to tag antibodies, with the 
readout by mass spectrometry, and thus allows the use of ~40 parameters simultaneously without 
the need for compensation [51, 52]. CyTOF profiling of the healthy human NK cell repertoire 
revealed between 6,000 and 30,000 unique NK cell subsets, based on combinatorial expression 
patterns of NKR, per individual [50]. As these subsets were not necessarily shared between indi-
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viduals, more than 120,000 NK cell subsets were present in the 22 individuals studied [50]. The 
magnitude of this diversity was surprising; studies of the receptor profiles in twins revealed both 
genetic and environmental influences. Inhibitory receptor profiles were genetically determined, 
but the activating receptor expression patterns appeared to be under environmental influence 
[50]. The result is a highly diverse and adaptable repertoire that is quite distinct even among adult 
twins, but maintains self-tolerance through strict regulation of inhibitory receptor expression 
patterns [50].

An important consideration in quantifying NK cell diversity is that these calculations are high-
ly dependent on the number of markers and methods used. For instance, the diversity score is 
diminished if fewer markers are used or if the markers selected are either highly and universally 
expressed or expressed at a very low frequency. Thus, while these methods are very valuable to 
compare populations within a given study, comparison between studies requires that identical 
markers be used. A second consideration is the fact that any single diversity score does not fully 
capture the repertoire characteristics and distributions. For example, the Inverse Simpson Index 
is commonly used to quantify both immune repertoire and microbiome diversity because it is 
adaptable to count data and does not require normally distributed data. However, this index can 
result in the same value with very different population structures—which may have significant 
functional implications. A specific example of this is that two healthy adults have nearly identical 
NK cell diversity scores by the Inverse Simpson Index (123 and 126), but a very different number 
of NK cell subsets among the same number of total NK cells (2189 and 446), indicating that the 
distribution of the populations must be quite different (Simpson and Blish, unpublished). Thus, 
while diversity calculations provide a convenient method to quantify and understand the NK 
cell population structure, their limitations must be understood as well. With these limitations in 
mind, it is still important to understand the factors that control the development, maintenance, 
and function of this diverse NK cell repertoire.

THE IMPACT OF IMMUNE EXPERIENCE ON THE NK CELL REPERTOIRE
Some clues about the factors that control the development and maintenance of NK cell diversity 
have come from studies of age-related changes in the NK cell repertoire (reviewed in [56]). Aged 
individuals have decreased expression of NKp30, NKp46 and NKG2D, and NKG2A and increased 
expression of KIR, LILRB1, and TIGIT [57-61]. Some studies suggest that NK cells maintain their 
cytolytic function with aging [57, 58], while others suggest that cytotoxicity and cytokine produc-
tion decrease with aging [62]. The extent to which age-related changes are due to intrinsic aging 
vs. accumulated environmental exposures, including cytomegalovirus (CMV) infection, are not 
entirely clear. However, while CMV infection is clearly a driver of many of these changes [63], 
some of these changes are not driven solely by CMV. Regardless of age and CMV status, “expe-
rienced” CD57+ NK cells express more NKRs per cell and significantly increase expression of a 
distinct pattern of activating and inhibitory NKR [53]. CD57+ NK cells are also skewed towards 
cytokine production at the cost of cytotoxicity [54]. These data suggest that “immune experience” 
may be a better metric for NK repertoire perturbations than aging itself. Consistent with this idea, 
in healthy adults, NK cell diversity significantly correlates with expression of CD57, but not with 
age, suggesting that immune experience is a major driver of NK cell diversity [54]. The idea that 
immune experience shapes NK cell repertoire diversity is also supported by the fact that cord 
blood NK cells have low CD57 expression and significantly lower NK cell diversity than adult NK 

http://www.PaiJournal.com


Pathogens and Immunity - Vol 1, No 1

www.PaiJournal.com

169

cells [54]. Finally, short-term in vitro exposure to viruses (HIV-1, West Nile Virus [WNV]) aug-
ments NK cell diversity [54], suggesting that serial viral exposures might shape and diversify the 
NK cell repertoire. Thus, if a wide range of receptor profiles accumulates immune experience, it is 
interesting to consider whether different NKR, singly or in combination, are particularly import-
ant in the response to different viruses. 

ROLE OF SPECIFIC RECEPTORS AND COMBINATIONS IN DIFFERENT VIRAL INFECTIONS
One explanation for the generation of NK cell diversity during an acute antiviral response is that 
the repertoire is adapted to generate a range of specificities in order to find the right “solution” for 
each virus. Along these lines, it stands to reason that a variety of different NK cell receptors might 
contribute to the recognition of any given virus, quite possibly with complementary and overlap-
ping functions. Consistent with this idea, many different studies have identified the role of par-
ticular NK cell receptors in the response to different viruses. I have summarized these findings in 
Table 1. They represent a mixture of epidemiologic associations and mechanistic studies. As even 
this exhaustive list does not comprehensively assess all of the literature, I also refer the reader to 
excellent reviews on the role of natural cytotoxicity receptors (NCRs) and NKG2D in responding 
to multiple viruses [64-68] and recent reviews of the role of KIR and their evolution in disease 
[69, 70]. 

NK CELL RECEPTORS AND HIV
Perhaps one of the most studied interactions between specific NK cell receptors and a virus is the 
interaction between KIR3DS1/L1 and HIV. In fact, the influence of KIR3DS1 on disease, partic-
ularly HIV, has recently been the topic of an entire review [71] . This association came to light 
based on the discovery that HIV-infected individuals with both KIR3DS1 and the HLA-B alleles 
containing the Bw4-80Ile epitope experience slower progression to AIDS [72, 73]. An additional 
study found that the combination of KIR3DL1 and HLA-Bw4-80I was also associated with slower 
disease progression [74]. Further confirming the importance of NK cell expression of KIR3DS1/
L1/HLA-Bw4-80I, copy number variation in KIR3DS1 and KIR3DL1 are associated with the HIV 
set point viral load, but only in the presence of the Bw4-80I allele [75]. KIR3DS1/L1 alleles are 
also associated with lower risk of HIV transmission between partners [76].

Consistent with these epidemiologic associations, NK cells expressing both KIR3DS1 and 
KIR3DL1 expand during HIV infection, but only in the presence of the HLA Bw4-80I allele 
[77]. The ability to suppress viral replication in vitro was associated with KIR3DS1 or KIR3DL1 
and HLA-Bw04 expression [77, 78]. In addition, individuals with protective KIR3DL1/S1 geno-
types inhibited HIV replication more potently than those lacking such alleles through secretion 
of CC-chemokines [79]. The antiviral efficacy of KIR3DS1 may relate to its association with the 
ITAM-bearing receptor DAP12 [80]. In all of these studies, it is important to note that many of 
the effects of KIR3DS1 vs. KIR3DL1 are difficult to dissect, as most KIR3DS1+ individuals also 
express KIR2DL1. In addition, KIR3DL1 is the most diverse of all the KIR, and different allotypes 
have dramatically different effects on HLA binding [81]. Taken together, both epidemiologic and 
experimental data suggest that both KIR3DS1 and KIR3DL1 play a role in the response to HIV, 
yet it is not apparent how both an activating and inhibitory receptor, that are nearly identical in 
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their extracellular domain, might both enhance responses to the same pathogen.

Recent data may provide some insight into this potential conundrum. The first issue is whether 
KIR3DS1 and KIR3DL1, given their similar extracellular domains, truly bind to the same ligand 
(in which case it would be hard to reconcile their similar effects in light of their opposing roles on 
NK cell activation). The inhibitory receptor KIR3DL1 binds to HLA-B molecules containing the 
Bw4-80Ile epitope [82]; however, several studies have failed to demonstrate similar binding for 
the activating KIR3DS1 receptor to Bw4-80I [80, 83, 84]. One potential limitation of these nega-
tive data, however, is that the researchers did not study HIV-infected cells, and it is possible that 
HIV peptides might alter the ability of KIR to bind HLA. Consistent with this idea, O’Connor 
et al. recently demonstrated that two different HIV peptides allow binding of KIR3DS1 to Bw4 
alleles [85]. Furthermore, a recent study demonstrated that KIR3DS1 binds to open conformers 
of HLA-F [86], indicating that even if it binds Bw4, it has additional ligands. Synthesizing these 
studies, it appears likely that there are multiple pathways by which KIR3DL1 and KIR3DS1 can 
contribute to HIV responses. The first, which explains the effects of KIR3DS1, is that NK cells 
bearing KIR3DS1 become activated through direct recognition of either HLA-F open confomers 
or of HLA-Bw4 alleles with specific HIV peptides. The second pathway, explaining the contribu-
tions of KIR3DL1, involves the effects of KIR3DL1/HLA-Bw4 on educating NK cells—leading 
to a generalized high activation status. As individuals with KIR3DL1 and the Bw40-80I epitope 
have highly educated NK cells, they are better able to suppress HIV replication, consistent with 
recent findings that KIR3DL1 and HLA-Bw4 density significantly influence HIV replication [87]. 
Thus, two entirely different pathways—one activating and associated with direct recognition, and 
the other inhibitory but associated with better “arming” NK cells through education/licensing—
might contribute to HIV responses. This finding also stresses the importance of diversity within 
the NK cell response—in this case two different solutions, generated by distinct and overlapping 
subsets of NK cells—are available to respond to HIV-infected cells.

Of course, recognition of HIV-infected cells is not just associated with KIR3DL1/S1 and HLA-
Bw4. Multiple interactions between KIR and HIV have been documented [88], as shown in Table 
1. NKG2A+ NK cells respond more frequently to HIV-infected cells than do NKG2A- NK cells 
[89]. The recent study by Davis et al., provides a potential mechanistic explanation for why this 
inhibitory receptor might contribute to HIV recognition [90]. The authors demonstrate that a 
highly conserved HIV peptide presented by HLA-E renders the cells susceptible to NKG2A-me-
diated killing (presumably by abolishing the recognition and preventing inhibitory signaling) 
[90]. Thus, NKG2A-expressing NK cells, which relatively infrequently co-express KIR, are not 
inhibited by the HLA-E on the surface of HIV-infected cells, whereas the more highly educated 
KIR-expressing NK cells will be inhibited through recognition of HLA-C that remains highly ex-
pressed during HIV infection. Consistent with this idea, another recent study demonstrated that 
KIR2DL3+NKG2A+ NK cells potently responded to HIV-infected cells though secretion of CC 
chemokines. But this effect was primarily seen in KIR2DL3+ individuals lacking HLA-C2 [91]. 
The “educated” KIR3DL2-expressing cells in HLA-C1 homozygotes might be inhibited by the 
HLA-C that is retained on the surface of HIV-infected cells. Finally, a variety of activating recep-
tors, including natural cytotoxicity receptors, NKG2D, KIR2DS4, FcRγ, NTB-A, and an additional 
inhibitory receptor, LILRB1, are all associated with HIV responses (Table 1). These data provide 
further support for the idea that NK cells have evolved diverse mechanisms to recognize and re-
spond to HIV infected cells, making diversity in receptor expression an intrinsic characteristic of 
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NK cells responding to viruses. 

DIVERSE NK CELL RECEPTORS ARE INVOLVED IN THE RESPONSE TO OTHER VIRUSES 
Specific KIR have also been associated with influenza infection. Expression of KIR2DL3 and 
KIR3DL1 was associated with more robust IFN-γ and cytolytic responses in vitro [92]. A more 
complex picture was observed in a clinical study in which either KIR3DL1/S1- or KIR2DL1-ex-
pressing individuals lacking the ligand or KIR2DL2/L3 and its cognate ligand were enriched 
among ICU patients during the 2009 influenza pandemic [93]. In addition to these KIR associ-
ations, there are well documented examples of natural cytotoxicity receptors, NKG2D, 2B4, and 
NTB-A playing a role in the recognition of influenza-infected cells [94-98], which are summa-
rized in Table 1.

Along similar lines, NK cells expressing KIR2DL3/L3 have increased degranulation to hepatitis C 
(HCV) [99]. In addition, the compound genotype KIR2DL3 homozygosity and HLA-C1 is asso-
ciated with HCV responses [100]. This observation may be explained by the fact that HLA-E ex-
pression was significantly unregulated in HCV-infected patients, but that KIR2DL3+NKG2A- NK 
cells were not susceptible to HLA-E mediated inhibition and therefore preserved their function 
[101]. Many additional associations with antiviral responses are noted and summarized in Table 
1. In particular, NKG2D is a recurring mediator of recognition for multiple tumor and infect-
ed cells. The fact that viruses have evolved a variety of means to downregulate NKG2D ligands 
provides evidence for its importance in mediating NK cell responses to a variety of pathogens [68, 
102]. It is also important to note that NKG2D is the focus of much research in large part because 
its ligands are known. However, for many other NK cell activating receptors, the ligands remain 
unknown. As a result, there might well be other escape mechanisms that we do not fully under-
stand or appreciate. 

THE DRAMATIC INFLUENCE OF CMV ON THE REPERTOIRE
While I have touched briefly above on the specific NKRs involved in the recognition of CMV-in-
fected cells, the impact of CMV infection on the NK cell repertoire is so dramatic that it has been 
the subject of several prior excellent reviews that do the subject far more justice than I can here 
[63, 103-105]. The most obvious impact of CMV infection is the expansion of a NKG2C+ NK cell 
subpopulation in a subset of CMV-seropositive individuals [106-112]. This NK cell subpopula-
tion is additionally characterized by high expression of CD57, low expression of NKp30, CD161, 
NKG2A, and Siglec-9 and often expression of self-specific KIR, suggesting that the expansion of 
these cells is restricted to an educated subset of NK cells [107, 113, 114]. Exposure to CMV-in-
fected fibroblasts drives the generation of this subset in vitro, supporting the idea that NK cells 
expressing NKG2C are preferentially responsive to CMV, likely a result of recognition of a viral 
antigen in the context of HLA-E, the ligand for NKG2C [109]. There is significant evidence that 
these NKG2C+CD57+ NK cells represent a memory-like subset of NK cells (reviewed in [103, 
104]). Supporting the idea that these cells are memory-like, NKG2C+CD57+ NK cells dramatical-
ly expand post-transplant in the setting of CMV reactivation, and the subsequent reduction in 
numbers upon control of viremia—kinetics consistent with a recall response [112, 115-117]. The 
recent demonstration that these memory-like NK cells have epigenetic changes that are associated 
with their altered functional capacity provides a critical and important mechanistic explanation 

http://www.PaiJournal.com


Pathogens and Immunity - Vol 1, No 1

www.PaiJournal.com

172

for how these memory-like responses might be generated [118-120]. 

If the existence of NKG2C+CD57+ NK cells represents a “clonal” expansion of CMV-specific NK 
cells, then it stands to reason that this clonal expansion would diminish the diversity of the NK 
cell repertoire and restrict downstream responses. This possibility is raised in the commentary by 
Achour et al., who speculate that CMV infection might decrease NK cell diversity and favor the 
development of certain tumors [103]. Supporting this idea, NKG2C+ NK cells differ in the profile 
of cytokines produced when compared to immature NK cells from CMV- patients, and in patterns 
that typically favor tumorigenesis [121-123]. 

At the surface, the idea that CMV infection narrows NK cell diversity through clonal expansion 
appears to be in conflict with the data that viral infection and maturity are both associated with 
increased NK cell repertoire diversity [53, 54, 124]. Yet, delving more deeply into the data, this 
apparent conflict does not exist. Indeed, the expansion of NKG2C+CD57+ NK cells can dominate 
the NK cell repertoire. However, these NK cells still express a vast array of additional activating 
and inhibitory receptors, and if diversity measures take into account these additional receptors, 
there is no reduction in NK cell diversity in CMV+ individuals [50, 53, 54, 113, 125]. In fact, 
individuals who were CMV+ were not significantly different in their NK cell repertoire diversity 
than CMV- individuals [50, 54]. Furthermore, we compared the NK diversity between NKG2C+ 
and NKG2C- cells within CMV-seropositive individuals, and found a trend for increased diver-
sity among NKG2C+ NK cells (Strauss-Albee and Blish, unpublished). Thus, even with the fixing 
of expression levels of several receptors due to a clonal-like expansion, the assortment of other 
activating and inhibitory receptors is sufficient to drive diversification of even these “clonal” cells. 
While CMV clearly imprints the NK cell repertoire and changes its function, these findings re-
main consistent with the idea that viral exposure drives NK cell diversification.

DOES NK CELL DIVERSITY DECREASE THE FLEXIBILITY OF THE NK CELL REPERTOIRE? 
Perhaps the most surprising finding about NK cell diversity in the last several years is the fact 
that higher pre-infection NK cell diversity is associated with increased risk of HIV acquisition 
in a small cohort (n = 37) of Kenyan women [54]. At the surface, this is a counterintuitive find-
ing—as immunologists, we always perceive diversity to be a good thing—so why would diversity 
be associated with increased risk of acquiring HIV? Simply put, the answer is not entirely clear, 
but there are several possibilities. First, given the difficulty of finding viably preserved peripheral 
blood mononuclear cells from prior to HIV infection, this was a small study, and may not hold 
following analysis of additional cohorts. Second, even if true, this is an association, not a causal 
finding. NK cell diversity might correlate with some other, unmeasured factors that actually are 
driving the enhanced risk. Despite these caveats, there are some clues as to potential mechanisms 
that might drive this exposure. Because viral exposure drives NK cell diversity and alters re-
sponsiveness [54], the women who acquired HIV infection may have had more HIV exposures, 
which result in increased NK cell diversity and increased risk. Another intriguing possibility, 
which needs to be evaluated in future studies, is that serial viral infections may modulate the NK 
cell repertoire and its responsiveness (Figure 1). According to this proposed model, the NK cell 
repertoire begins in a relatively homogenous, but very flexible and tunable state. Each viral ex-
posure diversifies and specializes the repertoire, enhancing recall responses for NK memory, but 
potentially diminishing the response to de novo pathogens. Notably, this model of commitment is 
consistent with data from murine NK cell memory in which memory NK cells, once committed 
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to one pathway, have diminished responses to the other [126]. I propose this model not as prov-
en, but as a framework for future studies and for consideration of the impact of vaccination on 
NK cell responses. It is critical that we understand the mechanisms by which repeated exposures 
affect NK cell responses to both on-target and off-target antigens.

Figure 1. Proposed model of the relationship between NK cell diversity and viral exposure. Based on the 
association between age, immune experience, and NK cell diversity, I propose that the NK cell repertoire 
begins as a naïve, flexible repertoire that is relatively homogenous from a phenotypic perspective, though 
it has extensive diversity in KIR expression patterns based on genetics. Upon encounter with different 
viruses, the NK cell repertoire diversifies, in part by increasing expression levels of activating receptors, as 
it seeks to adapt to the viral encounter. Each subsequent encounter further diversifies and specializes the 
repertoire. This specialization might contribute to memory/recall responses, but may also have the surpris-
ing effect of diminishing the ability to respond to de novo pathogens. Vaccine and viral challenge studies 
in human and animal models will be needed to validate or invalidate this model.

CONCLUSIONS
The advent of new technologies has put us at the cusp of unraveling the answers to many import-
ant questions about human NK cells, yet much uncertainty remains. How is NK cell diversity 
maintained at a stable level, for at least 6 months, when the half-life of NK cells is approximately 
2 weeks? Does NK cell diversity truly reflect differentiated NK cells that lack the flexibility to 
respond to a de novo pathogen? Can we identify unique subsets of NK cells that are primed to 
respond to different viruses or cancers? How does vaccination alter the NK cell repertoire and its 
responsiveness? In addition to these important questions, it is equally important to consider the 
limitations of the data presented. The extent to which the phenotype correlates with transcrip-
tional pathways is poorly characterized [63, 127], but might influence future studies, particularly 
those employing single cell RNA-seq. Finally, I have focused here only on blood NK cells, which 
are not necessarily representative of the NK cell subsets found in tissues [128-131]. It is an excit-
ing time, and I’m certain that future studies will shed significant light on the dynamics of the NK 
cell repertoire and its functional responses, and impact on viral susceptibility.
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Table 1. NK cell receptor virus interactions

Virus NK Cell 
Receptor Brief Description Reference

CMV NKG2C NGK2C+ cells expand during CMV infection
[106-112, 119, 120, 132, 
133]

CMV LIL-11, LIR-1 UL18 inhibits LIR-11;activates LIR-1 [134]

CMV NKp30 NKp30 inhibited by pp65 [135] 

CMV NKG2D Several viral proteins bind NKG2D to limit recognition [68]

Influenza 2B4 and NTB-A
2B4 and NTB-A receptors bind the influenza viral hemaggluti-
nin and co-stimulate NK cell cytotoxicity.

[98]

Influenza

KIR2DL3

KIR2DL1 

KIR3DL1/S1

KIR2DL3 and KIR3DL1 and HLA-C1 homozygosity leads to 
have enhanced IFN-γ secretion and degranulation to influenza 
A infection in vitro. Individuals with KIR3DL1/S1 or KIR2DL1 
but lacking the ligand enriched among ICU patients during the 
2009 flu pandemic, as were individuals with KIR2DL2/L3 and 
its cognate ligand. 

[92, 93]

Influenza NKp46
NKp46 interaction with HA leads to infected-cell lysis, with 
potential for escape of this pathway by NA-mediated removal of 
sialic acid residues from NKp46 to decrease recognition

[94-96] [97]

Influenza NKG2D
NKG2D (and NKp46) mediated recognition of influenza-infect-
ed dendritic cells

[95]

HIV CD94/HLA-E
CD94/HLA-E interaction may contribute to NK cell dysfunc-
tion in HIV infection

[136]

HIV FcRγ
FcRγ-NKp30-NKp46- NK cells are expanded in HIV and have 
enhanced ADCC activity

[137] 

HIV KIR2DS4 Full-length KIR2DS4 associated with disease progression [138] 

HIV KIR3DS1/KIR3DL1

Combinations of KIR3DS1 and/or KIR3DL1 and HLA-Bw4-80I 
are associated with delayed HIV progression. KIR3DL1 and 
HLA-B density and binding alter education and HIV respon-
siveness; KIR3DS1+ NK cells expand and can kill HIV-infected 
cells

[72, 73, 75-77, 79, 87, 
139-141]

HIV KIR2DL1-3+
KIR2DL1-imprinting on HIV strains; KIR2DL1-3+ NK cells 
more responsive

[142, 143]

HIV KIR2DL3

NKG2A+KIR2DL3+ cells potently secrete CC-chemokines, 
particularly in HLA-C2 individuals and KIR2DL3 is associat-
ed with resistance to HIV acquisition in HIV-exposed babies; 
selection of p24 sequence associated with KIR2DL3 escape

[91, 144-146]

HIV LILRB1 LILRB1+ NK cells control HIV-1 replication in DCs [147] 

HIV NCRs NCRs are decreased in chronic HIV infection [148]

HIV KIR
Nef induces endocytosis of HLA-I molecules, helping virus 
escape from NK cells

[149] 

HIV NKG2D
Nef downregulated NKG2D ligand in infected cells causing 
decreased cytotoxicity

[150] 
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HIV NTB-A, UL-16BP vpu/nef downregulate NK cell ligands: NTB-A, UL16-BP [151] 

HIV NKG2A
NKG2A+ NK cells respond more frequently than NKG2A- to 
HIV+ T cells; based on a conserved HIV-1-dervired peptide 
presented by HLA-E that renders cells susceptible to NKG2A

[89, 90]

HIV NKG2D
NKG2D acts as a co-receptor for natural killer cell-mediated 
anti-HIV-1 antibody-dependent cellular cytotoxicity.

[152] 

HIV NKG2D/NKp46
Lysis of HIV-1-infected autologous CD4+ primary T cells by in-
terferon-alpha-activated NK cells requires NKp46 and NKG2D.

[153]

HIV NKp46 NKp30
NKp30 and NKp46 expression correlates with AIDS-status of 
successfully treated patients

[154] 

HIV NTB-A 
Vpu downregulates NTB-A in infected T-cells, causing de-
creased degranulation by NK cells

[155]

HIV Siglec-7 Siglec-7 is decreased in NK cells of viremic patients [156] 

HIV and 
other patho-
gens

DNAM-1 and 
NKG2D

Review on NK-T crosstalk mediated by DNAM-1 and NKG2D 
and their ligands, in the context of infections

[67] 

HIV/HCV 
and other 
pathogens

NCRs Reviews on NCRs and pathogen interactions [65, 66] 

HCV KIR2DL2/L3
KIR2DL3/L3 increases function; KIR2DL3/HLA1C1 is associat-
ed with response.

[99-101]

HSV-2
NKG2C, KIR, 
CD57

HSV-2 infection drives NKG2A-NKG2C+KIR+CD57+ NK cells [157]

HSV, VSV NKG2D HSV decreases MICA, ULBP1, ULBP2, ULBP3 [158]

KSHV LFA, others 
K3 and K5 viral proteins downregulate MHC class I molecules, 
ICAM-1 ad B7-2, ligands for NK cell-mediated cytotoxicity 
receptors

[159]

Hantavirus NKG2C
NK cells expressing NKG2C expand (though most subjects also 
CMV+)

[160]

Multiple 
viruses

NKG2D and NCR
Review summarizing data from multiple viruses mwith meth-
ods to decrease NKG2D and possible NCR ligands

[64] 

CHIKV NKG2C and CD57 Mature cells more responsive [161]

Dengue Inhibitory KIRS NK cells with inhibitor KIRs respond preferentially to DENV [161, 162]

WNV and 
Dengue

NKp44
NKp44 directly binds to purified DV and WNV envelope 
proteins. Interaction of NK cells with infective and inactivated 
WNV results in NKp44-mediated NK degranulation

[163] 
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