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Interferons and HIV Infection: 
The Good, the Bad, and the Ugly

STANDFIRST
Type I interferons simultaneously control HIV replication and induce systemic immune activation, 
but whether the net effect is beneficial or detrimental remains controversial. 
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ABSTRACT
Whether type I interferons (IFNs) hinder or facilitate HIV disease progression is controversial. 
Type I IFNs induce the production of restriction factors that protect against mucosal HIV/SIV 
acquisition and limit virus replication once systemic infection is established. However, type I IFNs 
also increase systemic immune activation, a predictor of poor CD4+ T-cell recovery and progres-
sion to AIDS, and facilitate production and recruitment of target CD4+ T cells. In addition, type I 
IFNs induce CD4+ T-cell apoptosis and limit antigen-specific CD4+ and CD8+ T-cell responses. The 
outcomes of type I IFN signaling may depend on the timing of IFN-stimulated gene upregulation 
relative to HIV exposure and infection, local versus systemic type I IFN-stimulated gene expres-
sion, and the subtype of type I IFN evaluated. To date, most interventional studies have evaluated 
IFNα2 administration largely in chronic HIV infection, and few have evaluated the effects on tis-
sues or the HIV reservoir. Thus, whether the effect of type I IFN signaling on HIV disease is good, 
bad, or so complicated as to be ugly remains a topic of hot debate.
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Type I interferons (IFNs) include 13 IFNα subtypes, IFNβ, IFNε, IFNκ and IFNω. All type I IFNs 
bind the cell surface receptor IFNAR, a heterodimer of IFNAR1 and IFNAR2, but with varying 
affinities for each subunit [1, 2]. Binding and signaling through IFNAR results in the transcription 
of a multitude of IFN-stimulated genes (ISGs), and while all type I IFNs can activate antiviral path-
ways, the specific ISGs transcribed may vary widely [2].

Plasma IFNα levels are increased within the first week of HIV infection [3]. Based on data from 
rhesus macaque studies, ISGs are upregulated in peripheral blood and lymphoid tissues during 
acute simian immunodeficiency virus (SIV) infection, and despite decreasing, ISG expression re-
mains higher in chronic SIV infection compared to pre-infection levels [4-6]. While continued 
ISG expression in chronic HIV infection may reflect the host’s efforts to control virus replication 
and delay progression to AIDS, ISG expression has also been proposed to contribute directly to in-
creasing the systemic inflammation that has been implicated in disease progression and mortality. 
Indeed, the complex system of IFN signaling renders classifying its biological outcome as good, bad 
or even ugly, somewhat of a challenge.

THE GOOD . . .
Type I IFNs stimulate expression of HIV restriction factors that limit virus replication. These re-
striction factors act at virtually every stage of the HIV replicative cycle, from reverse transcription 
(SAMHD1 and APOBEC3) to nuclear entry (MX2) to transcription (Schlafen 11) and budding 
(tetherin) [7-12]. Endogenous type I IFN production likely contributes some protection against 
infection, consistent with data that transmitted/founder viruses are relatively resistant to type I 
IFNs [13, 14]. Intramuscular IFNα2a administration to rhesus macaques prevented systemic SIV 
infection following intrarectal inoculation as long as ISGs, including restriction factors, were up-
regulated [6]. In addition to upregulation in peripheral blood mononuclear cells, restriction fac-
tors were upregulated in rectal tissue and lymph nodes, protecting against transmission across the 
mucosal barrier and against dissemination, respectively. Similarly, vaginal IFNβ administration 
prevented simian/human immunodeficiency virus (SHIV) infection in rhesus macaques following 
vaginal challenge with concomitant upregulation of ISGs in vaginal suspensions [15], suggesting 
that expression of antiviral proteins at the site of inoculation is sufficient to protect against systemic 
infection. Clearly, therefore, type I IFN signaling can prevent retrovirus infection in primates.

Type I IFN signaling may also be beneficial during acute retrovirus infection. Decreasing or delay-
ing type I IFN signaling by in vivo blockade of IFNAR during acute SIV infection increased the SIV 
RNA setpoint [6], suggesting that the precise timing of ISG expression determines host control of 
virus production. Administration of IFNα2 during chronic HIV infection tends to decrease HIV 
RNA and p24 antigen levels but is by no means a panacea as it has yet to be shown that it improves 
clinical outcomes beyond antiretroviral therapy (ART) alone [7, 16-27]. However, recent data from 
in vitro and humanized mice studies suggest that IFNα8 and IFNα14 suppress HIV replication to a 
much larger extent than IFNα2 [28, 29], likely reflecting their higher affinities for IFNAR and sub-
sequent increased MX2 and tetherin expression and APOBEC3 activity. Thus, type I IFN signaling 
can both prevent retrovirus infection and suppress retrovirus replication after infection.
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THE BAD . . .
Clearly the elaboration of type I IFNs constitutes a proinflammatory response. In HIV infection, 
increased systemic immune activation predicts poor CD4+ T-cell recovery on ART and increased 
morbidity and mortality [30, 31]. Many have postulated that natural hosts of SIV such as sooty 
mangabeys and African green monkeys do not progress to AIDS because they downregulate ISGs 
and systemic immune activation just weeks after SIV infection [4, 5]. Notably, these species suffer 
less immunologic and structural damage to the gut during acute infection, which may explain the 
decreased inflammation in chronic infection[32]. Thus, once chronic SIV infection is established, 
these natural hosts have reverted to pre-infection levels of immune activation.

Several mechanisms have been proposed to explain this association of immune activation with dis-
ease progression. Increased ISG expression in CD4+ T cells is associated with CD4+ T-cell depletion 
[33], possibly via apoptosis mediated by tumor necrosis factor (TNF)-related apoptosis-inducing 
ligand (TRAIL) [34]. Type I IFNs also upregulate the HIV coreceptor CCR5 and induce pDC pro-
duction of CCR5 ligands, creating and recruiting more target cells and further facilitating CD4+ 
T-cell depletion [35, 36]. In addition, type I IFNs suppress thymic output, further limiting CD4+ 
T-cell recovery [37]. Indeed, higher circulating IFNα levels are associated with lower CD4+ T cell 
counts [38], and IFNα2a administration decreases CD4+ T cell counts in HIV-infected people [39]. 
Thus, while type I IFNs can suppress virus replication, they are also associated with increased CD4+ 
T-cell depletion.

In addition, chronic type I IFN signaling suppresses adaptive immunity. In the LCMV mouse mod-
el, blockade of type I IFN signaling improved antigen-specific CD4+ T-cell responses [40, 41], so 
type I IFNs not only suppress CD4+ T-cell recovery but also functionality. Type I IFNs do stimulate 
CD8+ T-cell activation and proliferation [27, 38, 42]. However, if type I IFN signaling precedes an-
tigen exposure, proliferation of antigen-specific CD8+ T cells is suppressed [43]. Thus, HIV-infect-
ed people exposed to new antigens, including in the context of vaccination, may have suboptimal 
T-cell responses. Together, these findings suggest that chronic type I IFN signaling can increase 
susceptibility of HIV-infected persons to other infections. 

THE UGLY . . .
Whether HIV clinical outcomes can be improved by increasing or decreasing type I IFN signaling 
remains hotly debated. The effect of type I IFN signaling on HIV disease pathogenesis varies based 
on whether acquisition, acute infection, chronic untreated infection, or chronic infection with vi-
rologic suppression is considered. 

Although systemic IFNα2a prevented SIV acquisition after rectal challenge [6], the findings may be 
different with vaginal challenge. The rectum is rich in CCR5+ CD4+ T cells, which may be readily 
infected with SIV [44]. In contrast, in the endocervix, pDCs are recruited to the site of infection 
where type I IFNs induce pDC production of CCR5 ligands that recruit CD4+ T cells. As a result, 
HIV-infected clusters form that serve as a nidus for dissemination [36]. While these pDCs may 
produce type I IFNs and induce antiviral protein expression, infection also spreads along the path 
of these infiltrating inflammatory cells [36]. Topical glycerol monolaureate was shown to suppress 
chemokines that recruit pDCs and prevent dissemination [36]. Paradoxically, topical IFNβ also 
prevented infection despite increasing the frequency of CCR5+ CD4+ T cells, likely due to simul-
taneous upregulation of antiviral mediators [15]. By accessing visceral tissues and lymphatic tis-



Pathogens and Immunity - Vol 1, No 1

www.PaiJournal.com

110

sues, systemic type I IFN administration may facilitate proliferation, recruitment, and activation of 
pDCs and CD4+ T cells and thereby facilitate dissemination or, alternatively, prevent spread with 
widespread induction of antiviral genes. The specific restriction factors critical for HIV control are 
also unknown, and an approach focused specifically on increasing the host’s ability to limit HIV 
replication rather than upregulating all IFN signaling may result in an intervention with greater 
tolerability and fewer adverse consequences. 

The precise timing of type I IFN signaling in acute retrovirus infection is critical for determining 
clinical outcomes. Insufficient IFN signaling in the first week of infection can result in rapid pro-
gression to AIDS [6]. However, whether boosting type I IFN signaling during acute infection can 
limit the reservoir has yet to be determined. Data from African green monkeys suggest no adverse 
consequences from IFNα2 administration starting 9 days post-infection, although ISGs were not 
further upregulated [45]. Rhesus macaques treated with type I IFN chimeras during the first 3 
months of SIV infection had a similar disease course to untreated animals, but the impact on IFN 
signaling was not evaluated [46]. Thus, whether IFN signaling can be further induced in acute 
retrovirus infection remains unknown. Certainly it is tempting to speculate that increased and 
prolonged restriction factor expression may limit the HIV reservoir and even result in long-term 
control.

In chronic untreated infection, the data are fairly consistent that IFNα2a can suppress HIV [7]. 
However, with the efficacy and tolerability of current antiviral regimens, the most clinically relevant 
question is whether type I IFNs can impact residual virus that persists despite ART. One potential 
limitation of antiretroviral medications is their ability to achieve sufficiently high levels in tissues 
such as lymph nodes [47]. Type I IFNs readily penetrate lymph nodes, the gastrointestinal tract, 
central nervous system, and other tissues [48]. Nonetheless, in people with chronic HIV infection 
taking suppressive ART, IFNα2 treatment has not had a dramatic impact on CD4 T-cell recovery 
to date, nor has it had a clear detrimental impact [7]. However, these studies have not comprehen-
sively evaluated the impact of type I IFNs on HIV levels in tissues. All studies published to date in 
chronic infection in non-human primates and humans have used IFNα2, so whether IFNα8 and 
IFNα14 would have a more pronounced effect is unknown. In addition, repetitive IFNα2a inocu-
lation can eventually cause an IFN-tolerant state, which increased the virus burden in our rhesus 
macaque study [6], but type I IFNs with stronger IFNAR affinity that induce different ISGs may not 
carry the same risk.

The interaction of HIV and type I IFNs is complicated. Factors such as the anatomical site of HIV 
exposure or stage of HIV disease may determine whether type I IFN signaling is beneficial or det-
rimental. The 17 different type I IFNs each bind to their receptor differently and induce different 
signaling cascades, yet most studies in humans have only evaluated one of these type I IFNs. Several 
questions remain:

1.	 Can boosting type I IFN signaling during acute HIV/SIV infection result in a smaller res-
ervoir and slower disease progression?

2.	 Does systemic type I IFN administration protect against or predispose to vaginal acquisi-
tion of HIV/SIV?



Pathogens and Immunity - Vol 1, No 1

www.PaiJournal.com

111

3.	 Are type I IFNs other than IFNα2 more effective in vivo at suppressing HIV/SIV repli-
cation during acute and chronic infection? Are they more pro-inflammatory or immuno-
suppressive?

4.	 Can IFN-induced restriction factors be upregulated in a focused way without risking the 
potential detrimental consequences of boosting systemic type I IFN signaling?

5.	 Would blocking IFN signaling in chronic infection contribute to a reduction in systemic 
immune activation and thus ameliorate clinical outcome?

Ultimately, much remains to be explored to determine whether the functionality of type I IFNs can 
be harnessed to prevent or cure HIV infection, and we would encourage further clinical studies in 
humans.

FINANCIAL SUPPORT/DISCLOSURES
None

REFERENCES

1.	 Schreiber G, Piehler J. The molecular basis for functional plasticity in type I interfer-
on signaling. Trends Immunol. 2015;36(3):139-49. PubMed PMID: 25687684. doi: 
10.1016/j.it.2015.01.002

2.	 Gibbert K, Schlaak JF, Yang D, Dittmer U. IFN-alpha subtypes: distinct biological 
activities in anti-viral therapy. Br J Pharmacol. 2013;168(5):1048-58. PubMed PMID: 
23072338. Pubmed Central PMCID: Pmc3594665. doi: 10.1111/bph.12010

3.	 Stacey AR, Norris PJ, Qin L, Haygreen EA, Taylor E, Heitman J, Lebedeva M, DeCamp 
A, Li D, Grove D, Self SG, Borrow P. Induction of a striking systemic cytokine cas-
cade prior to peak viremia in acute human immunodeficiency virus type 1 infection, 
in contrast to more modest and delayed responses in acute hepatitis B and C virus 
infections. J Virol. 2009;83(8):3719-33. PubMed PMID: 19176632. Pubmed Central 
PMCID: Pmc2663284. doi: 10.1128/jvi.01844-08

4.	 Bosinger SE, Li Q, Gordon SN, Klatt NR, Duan L, Xu L, Francella N, Sidahmed 
A, Smith AJ, Cramer EM, Zeng M, Masopust D, Carlis JV, Ran L, Vanderford TH, 
Paiardini M, Isett RB, Baldwin DA, Else JG, Staprans SI, Silvestri G, Haase AT, Kel-
vin DJ. Global genomic analysis reveals rapid control of a robust innate response in 
SIV-infected sooty mangabeys. J Clin Invest. 2009;119(12):3556-72. PubMed PMID: 
19959874. 

5.	 Jacquelin B, Mayau V, Targat B, Liovat AS, Kunkel D, Petitjean G, Dillies MA, 
Roques P, Butor C, Silvestri G, Giavedoni LD, Lebon P, Barre-Sinoussi F, Benecke A, 
Muller-Trutwin MC. Nonpathogenic SIV infection of African green monkeys induces 
a strong but rapidly controlled type I IFN response. J Clin Invest. 2009;119(12):3544-
55. PubMed PMID: 19959873. 

6.	 Sandler NG, Bosinger SE, Estes JD, Zhu RT, Tharp GK, Boritz E, Levin D, Wijeyesing-
he S, Makamdop KN, del Prete GQ, Hill BJ, Timmer JK, Reiss E, Yarden G, Darko S, 



Pathogens and Immunity - Vol 1, No 1

www.PaiJournal.com

112

Contijoch E, Todd JP, Silvestri G, Nason M, Norgren RB, Jr., Keele BF, Rao S, Langer 
JA, Lifson JD, Schreiber G, Douek DC. Type I interferon responses in rhesus macaques 
prevent SIV infection and slow disease progression. Nature. 2014;511(7511):601-5. 
PubMed PMID: 25043006. Pubmed Central PMCID: Pmc4418221. doi: 10.1038/na-
ture13554

7.	 Bosinger SE, Utay NS. Type I interferon: understanding its role in HIV pathogenesis 
and therapy. Curr HIV/AIDS Rep. 2015;12(1):41-53. PubMed PMID: 25662992. doi: 
10.1007/s11904-014-0244-6

8.	 Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, Rice CM. A 
diverse range of gene products are effectors of the type I interferon antiviral response. 
Nature. 2011;472(7344):481-5. PubMed PMID: 21478870. 

9.	 Pillai SK, Abdel-Mohsen M, Guatelli J, Skasko M, Monto A, Fujimoto K, Yukl S, 
Greene WC, Kovari H, Rauch A, Fellay J, Battegay M, Hirschel B, Witteck A, Berna-
sconi E, Ledergerber B, Gunthard HF, Wong JK. Role of retroviral restriction factors in 
the interferon-alpha-mediated suppression of HIV-1 in vivo. Proc Natl Acad Sci U S 
A. 2012;109(8):3035-40. PubMed PMID: 22315404. 

10.	Goujon C, Moncorge O, Bauby H, Doyle T, Ward CC, Schaller T, Hue S, Barclay WS, 
Schulz R, Malim MH. Human MX2 is an interferon-induced post-entry inhibitor of 
HIV-1 infection. Nature. 2013;502(7472):559-62. PubMed PMID: 24048477. 

11.	Kane M, Yadav SS, Bitzegeio J, Kutluay SB, Zang T, Wilson SJ, Schoggins JW, Rice CM, 
Yamashita M, Hatziioannou T, Bieniasz PD. MX2 is an interferon-induced inhibitor of 
HIV-1 infection. Nature. 2013;502(7472):563-6. PubMed PMID: 24121441. 

12.	Schoggins JW, MacDuff DA, Imanaka N, Gainey MD, Shrestha B, Eitson JL, Mar KB, 
Richardson RB, Ratushny AV, Litvak V, Dabelic R, Manicassamy B, Aitchison JD, 
Aderem A, Elliott RM, Garcia-Sastre A, Racaniello V, Snijder EJ, Yokoyama WM, 
Diamond MS, Virgin HW, Rice CM. Pan-viral specificity of IFN-induced genes re-
veals new roles for cGAS in innate immunity. Nature. 2013;505(7485):691-5. PubMed 
PMID: 24284630. 

13.	Parrish NF, Gao F, Li H, Giorgi EE, Barbian HJ, Parrish EH, Zajic L, Iyer SS, Decker 
JM, Kumar A, Hora B, Berg A, Cai F, Hopper J, Denny TN, Ding H, Ochsenbauer C, 
Kappes JC, Galimidi RP, West AP, Jr., Bjorkman PJ, Wilen CB, Doms RW, O’Brien M, 
Bhardwaj N, Borrow P, Haynes BF, Muldoon M, Theiler JP, Korber B, Shaw GM, Hahn 
BH. Phenotypic properties of transmitted founder HIV-1. Proc Natl Acad Sci U S A. 
2013;110(17):6626-33. PubMed PMID: 23542380. 

14.	Fenton-May AE, Dibben O, Emmerich T, Ding H, Pfafferott K, Aasa-Chapman MM, 
Pellegrino P, Williams I, Cohen MS, Gao F, Shaw GM, Hahn BH, Ochsenbauer C, 
Kappes JC, Borrow P. Relative resistance of HIV-1 founder viruses to control by inter-
feron-alpha. Retrovirology. 2013;10:146. PubMed PMID: 24299076. 

15.	Veazey RS, Pilch-Cooper HA, Hope TJ, Alter G, Carias AM, Sips M, Wang X, Rodri-
guez B, Sieg SF, Reich A, Wilkinson P, Cameron MJ, Lederman MM. Prevention of 
SHIV transmission by topical IFN-beta treatment. Mucosal Immunol. 2016. PubMed 
PMID: 26838048. doi: 10.1038/mi.2015.146



Pathogens and Immunity - Vol 1, No 1

www.PaiJournal.com

113

16.	Tavel JA, Huang CY, Shen J, Metcalf JA, Dewar R, Shah A, Vasudevachari MB, Foll-
mann DA, Herpin B, Davey RT, Polis MA, Kovacs J, Masur H, Lane HC. Interfer-
on-alpha produces significant decreases in HIV load. J Interferon Cytokine Res. 
2010;30(7):461-4. PubMed PMID: 20235638. 

17.	Brook MG, Gor D, Forster SM, Harris W, Jeffries DJ, Thomas HC. Suppression of HIV 
p24 antigen and induction of HIV anti-p24 antibody by alpha interferon in patients 
with chronic hepatitis B. Aids. 1988;2(5):391-3. PubMed PMID: 3146270.  

18.	de Wit R, Schattenkerk JK, Boucher CA, Bakker PJ, Veenhof KH, Danner SA. Clin-
ical and virological effects of high-dose recombinant interferon-alpha in dissemi-
nated AIDS-related Kaposi’s sarcoma. Lancet. 1988;2(8622):1214-7. PubMed PMID: 
2903953. 

19.	Lane HC, Kovacs JA, Feinberg J, Herpin B, Davey V, Walker R, Deyton L, Metcalf 
JA, Baseler M, Salzman N, Manischewitz J, Quinnan G, Masur H, Fauci, AS. An-
ti-retroviral effects of interferon-alpha in AIDS-associated Kaposi’s sarcoma. Lancet. 
1988;2(8622):1218-22. PubMed PMID: 2903954. 

20.	Kovacs JA, Deyton L, Davey R, Falloon J, Zunich K, Lee D, Metcalf JA, Bigley JW, Saw-
yer LA, Zoon KC, Masur H, Fauci AS, Lane HC. Combined zidovudine and interfer-
on-alpha therapy in patients with Kaposi sarcoma and the acquired immunodeficiency 
syndrome (AIDS). Ann Intern Med. 1989;111(4):280-7. PubMed PMID: 2757312. 

21.	Lane HC, Davey V, Kovacs JA, Feinberg J, Metcalf JA, Herpin B, Walker R, Deyton L, 
Davey RT, Jr., Falloon J, Polis MA, Salzman NP, Baseler M, Masur H, Fauci AS. In-
terferon-alpha in patients with asymptomatic human immunodeficiency virus (HIV) 
infection. A randomized, placebo-controlled trial. Ann Intern Med. 1990;112(11):805-
11. PubMed PMID: 1971503. 

22.	Krown SE, Gold JW, Niedzwiecki D, Bundow D, Flomenberg N, Gansbacher B, Brew 
BJ. Interferon-alpha with zidovudine: safety, tolerance, and clinical and virologic ef-
fects in patients with Kaposi sarcoma associated with the acquired immunodeficiency 
syndrome (AIDS). Ann Intern Med. 1990;112(11):812-21. PubMed PMID: 1971504. 

23.	Mildvan D, Bassiakos Y, Zucker ML, Hyslop N, Jr., Krown SE, Sacks HS, Zachary J, 
Paredes J, Fessel WJ, Rhame F, Kramer F, Fischl MA, Poiesz B, Wood K, Ruprecht RM, 
Kim J, Grossberg SE, Kasdan P, Berge P, Marshak A, Pettinelli C. Synergy, activity and 
tolerability of zidovudine and interferon-alpha in patients with symptomatic HIV-
1 infection: AIDS Clincal Trial Group 068. Antivir Ther. 1996;1(2):77-88. PubMed 
PMID: 11321183. 

24.	Krown SE, Aeppli D, Balfour HH, Jr. Phase II, randomized, open-label, communi-
ty-based trial to compare the safety and activity of combination therapy with recom-
binant interferon-alpha2b and zidovudine versus zidovudine alone in patients with 
asymptomatic to mildly symptomatic HIV infection. HIV Protocol C91-253 Study 
Team. J Acquir Immune Defic Syndr Hum Retrovirol. 1999;20(3):245-54. PubMed 
PMID: 10077172. 

25.	Azzoni L, Foulkes AS, Papasavvas E, Mexas AM, Lynn KM, Mounzer K, Tebas P, 
Jacobson JM, Frank I, Busch MP, Deeks SG, Carrington M, O’Doherty U, Kostman J, 



Pathogens and Immunity - Vol 1, No 1

www.PaiJournal.com

114

Montaner LJ. Pegylated Interferon alfa-2a monotherapy results in suppression of HIV 
type 1 replication and decreased cell-associated HIV DNA integration. J Infect Dis. 
2013;207(2):213-22. PubMed PMID: 23105144. 

26.	Emilie D, Burgard M, Lascoux-Combe C, Laughlin M, Krzysiek R, Pignon C, Rudent 
A, Molina JM, Livrozet JM, Souala F, Chene G, Grangeot-Keros L, Galanaud P, Sereni 
D, Rouzioux C. Early control of HIV replication in primary HIV-1 infection treated 
with antiretroviral drugs and pegylated IFN alpha: results from the Primoferon A 
(ANRS 086) Study. Aids. 2001;15(11):1435-7. PubMed PMID: 11504966. 

27.	Manion M, Rodriguez B, Medvik K, Hardy G, Harding CV, Schooley RT, Pollard R, 
Asmuth D, Murphy R, Barker E, Brady KE, Landay A, Funderburg N, Sieg SF, Leder-
man MM. Interferon-alpha administration enhances CD8+ T cell activation in HIV 
infection. PLoS One. 2012;7(1):e30306. PubMed PMID: 22291932. 

28.	Lavender KJ, Gibbert K, Peterson KE, Van Dis E, Francois S, Woods T, Messer RJ, 
Gawanbacht A, Muller JA, Munch J, Phillips K, Race B, Harper MS, Guo K, Lee EJ, 
Trilling M, Hengel H, Piehler J, Verheyen J, Wilson CC, Santiago ML, Hasenkrug KJ, 
Dittmer U. Interferon Alpha Subtype-Specific Suppression of HIV-1 Infection In Vivo. 
J Virol. 2016;90(13):6001-13. PubMed PMID: 27099312. doi: 10.1128/jvi.00451-16

29.	Harper MS, Guo K, Gibbert K, Lee EJ, Dillon SM, Barrett BS, McCarter MD, Hasenk-
rug KJ, Dittmer U, Wilson CC, Santiago ML. Interferon-alpha Subtypes in an Ex Vivo 
Model of Acute HIV-1 Infection: Expression, Potency and Effector Mechanisms. PLoS 
Pathog. 2015;11(11):e1005254. PubMed PMID: 26529416. Pubmed Central PMCID: 
Pmc4631339. doi: 10.1371/journal.ppat.1005254

30.	Hunt PW, Martin JN, Sinclair E, Bredt B, Hagos E, Lampiris H, Deeks SG. T cell 
activation is associated with lower CD4+ T cell gains in human immunodeficiency 
virus-infected patients with sustained viral suppression during antiretroviral therapy. J 
Infect Dis. 2003;187(10):1534-43. PubMed PMID: 12721933.  

31.	Utay NS, Hunt PW. Role of immune activation in progression to AIDS. Curr Opin 
HIV AIDS. 2016;11(2):131-7. PubMed PMID: 26731430. Pubmed Central PMCID: 
Pmc4750472. doi: 10.1097/coh.0000000000000242

32.	Brenchley JM, Silvestri G, Douek DC. Nonprogressive and progressive primate im-
munodeficiency lentivirus infections. Immunity. 2010;32(6):737-42. PubMed PMID: 
20620940. Pubmed Central PMCID: Pmc2904340. doi: 10.1016/j.immuni.2010.06.004

33.	Fernandez S, Tanaskovic S, Helbig K, Rajasuriar R, Kramski M, Murray JM, Beard 
M, Purcell D, Lewin SR, Price P, French MA. CD4+ T-cell deficiency in HIV patients 
responding to antiretroviral therapy is associated with increased expression of inter-
feron-stimulated genes in CD4+ T cells. J Infect Dis. 2011;204(12):1927-35. PubMed 
PMID: 22006994. 

34.	Herbeuval JP, Boasso A, Grivel JC, Hardy AW, Anderson SA, Dolan MJ, Choug-
net C, Lifson JD, Shearer GM. TNF-related apoptosis-inducing ligand (TRAIL) in 
HIV-1-infected patients and its in vitro production by antigen-presenting cells. Blood. 
2005;105(6):2458-64. PubMed PMID: 15585654. doi: 10.1182/blood-2004-08-3058

35.	Stoddart CA, Keir ME, McCune JM. IFN-alpha-induced upregulation of CCR5 leads 



Pathogens and Immunity - Vol 1, No 1

www.PaiJournal.com

115

to expanded HIV tropism in vivo. PLoS Pathog. 2010;6(2):e1000766. PubMed PMID: 
20174557. Pubmed Central PMCID: Pmc2824759. doi: 10.1371/journal.ppat.1000766

36.	Li Q, Estes JD, Schlievert PM, Duan L, Brosnahan AJ, Southern PJ, Reilly CS, Peterson 
ML, Schultz-Darken N, Brunner KG, Nephew KR, Pambuccian S, Lifson JD, Carl-
is JV, Haase AT. Glycerol monolaurate prevents mucosal SIV transmission. Nature. 
2009;458(7241):1034-8. PubMed PMID: 19262509. 

37.	Dion ML, Poulin JF, Bordi R, Sylvestre M, Corsini R, Kettaf N, Dalloul A, Boulassel 
MR, Debre P, Routy JP, Grossman Z, Sekaly RP, Cheynier R. HIV infection rapidly in-
duces and maintains a substantial suppression of thymocyte proliferation. Immunity. 
2004;21(6):757-68. PubMed PMID: 15589165. 

38.	Hardy GA, Sieg S, Rodriguez B, Anthony D, Asaad R, Jiang W, Mudd J, Schacker T, 
Funderburg NT, Pilch-Cooper HA, Debernardo R, Rabin RL, Lederman MM, Hard-
ing CV. Interferon-alpha is the primary plasma type-I IFN in HIV-1 infection and 
correlates with immune activation and disease markers. PLoS One. 2013;8(2):e56527. 
PubMed PMID: 23437155. 

39.	Massanella M, Tural C, Papagno L, Garcia E, Jou A, Bofill M, Autran B, Clotet B, 
Blanco J. Changes in T-cell subsets in HIV-HCV-coinfected patients during pegylated 
interferon-alpha2a plus ribavirin treatment. Antivir Ther. 2010;15(3):333-42. PubMed 
PMID: 20516553. 

40.	Wilson EB, Yamada DH, Elsaesser H, Herskovitz J, Deng J, Cheng G, Aronow BJ, Karp 
CL, Brooks DG. Blockade of chronic type I interferon signaling to control persistent 
LCMV infection. Science. 2013;340(6129):202-7. PubMed PMID: 23580528. 

41.	Teijaro JR, Ng C, Lee AM, Sullivan BM, Sheehan KC, Welch M, Schreiber RD, de la 
Torre JC, Oldstone MB. Persistent LCMV infection is controlled by blockade of type I 
interferon signaling. Science. 2013;340(6129):207-11. PubMed PMID: 23580529. 

42.	Curtsinger JM, Valenzuela JO, Agarwal P, Lins D, Mescher MF. Type I IFNs provide a 
third signal to CD8 T cells to stimulate clonal expansion and differentiation. J Immu-
nol. 2005;174(8):4465-9. PubMed PMID: 15814665. 

43.	Marshall HD, Urban SL, Welsh RM. Virus-induced transient immune suppression and 
the inhibition of T cell proliferation by type I interferon. J Virol. 2011;85(12):5929-
39. PubMed PMID: 21471240. Pubmed Central PMCID: Pmc3126308. doi: 
10.1128/jvi.02516-10

44.	McElrath MJ, Smythe K, Randolph-Habecker J, Melton KR, Goodpaster TA, Hughes 
SM, Mack M, Sato A, Diaz G, Steinbach G, Novak RM, Curlin M, Lord JD, Maenza 
J, Duerr A, Frahm N, Hladik F. Comprehensive assessment of HIV target cells in the 
distal human gut suggests increasing HIV susceptibility toward the anus. J Acquir 
Immune Defic Syndr. 2013;63(3):263-71. PubMed PMID: 23392465. 

45.	Jacquelin B, Petitjean G, Kunkel D, Liovat AS, Jochems SP, Rogers KA, Ploquin MJ, 
Madec Y, Barre-Sinoussi F, Dereuddre-Bosquet N, Lebon P, Le Grand R, Villinger F, 
Muller-Trutwin M. Innate immune responses and rapid control of inflammation in 
African green monkeys treated or not with interferon-alpha during primary SIVagm 
infection. PLoS Pathog. 2014;10(7):e1004241. PubMed PMID: 24991927. Pubmed 



Pathogens and Immunity - Vol 1, No 1

www.PaiJournal.com

116

Central PMCID: Pmc4081777. doi: 10.1371/journal.ppat.1004241
46. Schellekens H, Niphuis H, Buijs L, Douw van der Krap P, Hochkeppel HK, Heeney

JL. The effect of recombinant human interferon alpha B/D compared to interferon
alpha 2b on SIV infection in rhesus macaques. Antiviral Res. 1996;32(1):1-8. PubMed
PMID: 8863990.

47. Fletcher CV, Staskus K, Wietgrefe SW, Rothenberger M, Reilly C, Chipman JG, Beil-
man GJ, Khoruts A, Thorkelson A, Schmidt TE, Anderson J, Perkey K, Stevenson M,
Perelson AS, Douek DC, Haase AT, Schacker TW. Persistent HIV-1 replication is as-
sociated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl
Acad Sci U S A. 2014;111(6):2307-12. PubMed PMID: 24469825. Pubmed Central
PMCID: PMC3926074. doi: 10.1073/pnas.1318249111

48. Johns TG, Kerry JA, Veitch BA, Mackay IR, Tutton PJ, Tymms MJ, Cheetham BF,
Hertzog PJ, Linnane AW. Pharmacokinetics, tissue distribution, and cell localization of
[35S]methionine-labeled recombinant human and murine alpha interferons in mice.
Cancer Res. 1990;50(15):4718-23. PubMed PMID: 2369745.

COPYRIGHT
© Pathogens and Immunity 2017

This work is licensed under a Creative Commons Attribution 4.0 International License. To view a 
copy of this license, visit http://creativecommons.org/licenses/by/4.0/ 


