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Rosuvastatin Decreases Intestinal Fatty Acid  
Binding Protein (I-FABP), but Does Not Alter Zonulin 
or Lipopolysaccharide Binding Protein (LBP) Levels, 
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STANDFIRST
Rosuvastatin treatment does not appear to improve GI-integrity in persons infected with HIV.
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ABSTRACT 
Introduction: Altered gastrointestinal (GI) barrier integrity and subsequent microbial transloca-
tion may contribute to immune activation in HIV infection. We have reported that rosuvastatin 
improved several markers of immune activation in HIV+ participants, but the effect of statin 
treatment on markers of GI barrier dysfunction is unknown. 

Methods: SATURN-HIV is a randomized, double-blind, placebo-controlled trial assessing the 
effect of rosuvastatin (10mg/daily) on markers of cardiovascular disease, inflammation, and 
immune activation in ART-treated patients. Gut-barrier integrity was assessed by the surrogate 
markers intestinal fatty acid binding protein (I-FABP), a marker of enterocyte death, and zonu-
lin-1, a marker of gut epithelial cell function. Levels of lipopolysaccharide binding protein (LBP) 
were measured as a marker of microbial translocation. 

Results: Rosuvastatin significantly reduced levels of I-FABP during the treatment period com-
pared to the placebo. There was no effect of rosuvastatin treatment on levels of zonulin or LBP. 
Baseline levels of LBP were directly related to several markers of immune activation in samples 
from all participants, including soluble CD163, IP-10, VCAM-1, TNFR-II, and the proportion of 
CD4+ and CD8+ T cells expressing CD38 and HLA-DR. Many of these relationships, however, 
were not seen in the statin arm alone at baseline or over time, as inflammatory markers often 
decreased and LBP levels were unchanged. 

Conclusions: Forty-eight weeks of rosuvastatin treatment reduced levels of I-FABP, but did not 
affect levels of zonulin or LBP. The reduction in levels of inflammatory markers that we have 
reported with rosuvastatin treatment is likely mediated through other mechanisms not related to 
gut integrity or microbial translocation.
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SATURN-HIV is registered on clinicaltrials.gov; Identifier: NCT01218802

INTRODUCTION
Immune activation and inflammation are hallmarks of chronic HIV infection, even when HIV+ 
individuals are receiving suppressive antiretroviral therapy (ART) [1, 2]. Several markers of 
immune activation, including interleukin-6 (IL-6), soluble CD14 (sCD14), and markers of T-cell 
activation, are associated with mortality in this population [3, 4]. Strategies to reduce immune ac-
tivation in ART-treated HIV infection are being explored. Statins, or 3-hydroxy-3-methylglutaryl 
coenzyme A (HMG-CoA) reductase inhibitors, have anti-inflammatory effects [5, 6], and within 
the Stopping Atherosclerosis and Treating Unhealthy bone with RosuvastatiN in HIV (SAT-
URN-HIV) trial, we have reported significant reductions in monocyte (sCD14 and tissue factor 
expression) and T-cell activation (CD38 and HLA-DR on CD4+ and CD8+ cells) and vascular 
inflammation (lipoprotein-associated phospholipase A 2 [Lp-PLA2]) following initiation of statin 
therapy [7-9]. The mechanism(s) related to statin-induced reduction of immune activation in 
HIV infection remain incompletely understood. 

http://www.PaiJournal.com


Pathogens and Immunity - Vol 1, No 1

www.PaiJournal.com

120

There are likely multiple contributors to immune activation in ART-treated HIV infection, in-
cluding: low level HIV-1 replication [10]; copathogens [11]; pro-inflammatory lipids (e.g., oxi-
dized LDL) [12, 13]; and microbial translocation [14]. Decreased GI integrity leads to increased 
circulating levels of lipopolysaccharide (LPS) in persons infected with HIV [15], and while ART 
often reduces plasma levels of LPS, these levels do not always normalize [16]. Plasma levels of LPS 
are directly related to T-cell and monocyte activation markers—including markers that predict 
mortality in HIV-infected individuals [17]—and LPS levels are related to coagulation markers in 
SIV-infected nonhuman primates [18]. Further, markers of gut epithelial barrier integrity (intesti-
nal fatty acid binding protein [I-FABP] and zonulin-1) are also related to mortality in HIV-infect-
ed individuals [19]. We have reported previously that 48 weeks of statin therapy reduces cellular 
and plasma markers of monocyte, endothelial cell, and T-cell activation [7-9]. Here, we measured 
plasma levels of I-FABP, a marker of enterocyte death [20], zonulin-1, a marker of enterocyte 
function [21], and lipopolysaccharide binding protein (LBP), in order to determine whether the 
effect of statin therapy on reducing immune activation is mediated by improvement of GI integri-
ty and reduction of microbial translocation. 

MATERIALS AND METHODS 

Study Design
Details of the trial design have been published [7-9]; in brief, SATURN-HIV is a randomized, 
double-blind, placebo-controlled study designed to measure the effect of rosuvastatin (10mg/
day) on markers of cardiovascular risk, skeletal health, and immune activation in HIV disease, 
and is registered on clinicaltrials.gov, Identifier: NCT01218802. SATURN-HIV was approved 
by the Institutional Review Board of University Hospitals Case Medical Center (Cleveland, OH) 
and all subjects signed a written consent prior to enrollment. The study was a 96 week trial that 
began with enrolling patients on 3/24/2011 and ended on 6/5/2014. Study drugs (active and 
placebo) were provided by AstraZeneca. All subjects were on stable ART for at least 3 months and 
cumulative ART duration of at least 6 months, with HIV-1 RNA <1,000 copies/mL, with fasting 
LDL-cholesterol (LDL-C) ≤130mg/dL and fasting triglycerides≤500mg/dL. Additional entry 
criteria included evidence of either heightened T-cell activation, identified as the proportion of 
CD8+ T cells that expressed CD38+HLA-DR+ ≥19%, or levels of high sensitivity C-reactive pro-
tein (hs-CRP) ≥2mg/L. Exclusion criteria included diabetes and known CVD. 

Blood/Sample Preparation
Whole blood samples were collected into EDTA-containing tubes. Plasma was isolated by centrif-
ugation for 10 minutes at 400xg and was frozen at −80oC until thawed once and analyzed in batch. 
Plasma samples were collected at baseline, and at 24 and 48 weeks. Levels of zonulin-1 (ALPCO, 
Salem, NH), I-FABP (R&D Systems human FABP2 Duoset ELISA system: Minneapolis MN), and 
LBP (Hycult Biotech, Plymouth Meeting, PA) were measured by enzyme-linked immunosorbent 
assays (ELISA). Other plasma markers and cellular markers of immune activation were measured 
and have been described previously [8]. Levels of soluble CD14 and CD163 were measured using 
Quantikine enzyme-linked immunosorbant assay (ELISA) kits (R&D Systems, Minneapolis MN); 
levels of the proinflammatory cytokine IL-6 and soluble receptors of tumor necrosis factor α (sT-
NFR-I and sTNFR-II), interferon γ–inducible protein 10 (IP-10), the cellular adhesion molecules 
soluble vascular cell adhesion molecule 1 (sVCAM-1) and soluble intercellular adhesion molecule 
1 (sICAM-1) were also measured by ELISAs (R&D Systems, Minneapolis, MN). 
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T-Cell Phenotyping 
The proportion of activated T cells required to determine eligibility was measured by analyses 
of freshly collected whole blood samples, processed as above. T cells were identified by size and 
granularity and by positive expression of CD3 and CD4 or CD8. T-cell activation was measured 
using anti-CD38 (PE), anti-HLA-DR (FITC), anti-CD3 (Peridinin Chlorophyll Protein Complex, 
PerCP), anti-CD8 (allophycocyanin-cy7, APC-cy7), and anti-CD4 (allophycocyanin, APC, all 
from BD Biosciences). 

Assessment of T-cell activation for the entry, 24-, and 48-week timepoints was performed by 
comparing the expression of surface markers on cryopreserved PBMC samples from each patient. 
Samples were thawed and analyzed in batch. In addition to the T-cell markers described above, 
analysis of frozen PBMC samples also included a stain for cell viability (Live/Dead Violet, Pacific 
Blue) and an additional activation marker PD-1 (PE-Cy7, BD Pharmingen). Samples were ana-
lyzed using a Miltenyi MACS Quant flow cytometer (MiltenyiBiotec, BergischGladbach, Germa-
ny). MACS Quantify software (version 2.21031.1, MiltenyiBiotec) was used to analyze the data. 

STATISTICAL METHODS
Demographics, clinical characteristics, fasting metabolic parameters, and inflammatory and co-
agulation markers are described by study group. Continuous measures are described by medians 
and interquartile ranges, and nominal variables are described with frequencies and percentages. 

Nominal variables were compared using χ2 analysis or Fisher’s exact test. Continuous measures 
were tested for normality. For between-group comparisons (at baseline and changes from base-
line to 48 weeks), normally-distributed variables were compared using t-tests, and non-normal-
ly-distributed variables were compared using Wilcoxon rank sum tests. For within-group changes 
from baseline to 48 weeks, normally-distributed variables were compared with a paired t-test, 
and non-normally-distributed variables were compared with Wilcoxon signed rank test. The 
non-parametric Spearman correlation was used to estimate correlations among changes in mark-
ers of inflammation and immune activation at week 48. Longitudinal changes in gut integrity bio-
markers (IFAB, zonulin, and LBP) for rosuvastatin treatment were studied using the generalized 
estimating equation approach [22]. For visual comparison, the changes in gut biomarkers were 
also studied using graphs (box plot) over the 48-week period between the treatment groups. 

All analyses were done using statistical software SAS 9.3 (SAS Institute Inc., Cary, NC, USA) and 
statistical software Stata 13.0 (College Station, TX).

RESULTS
Baseline demographic and immunologic characteristics of study subjects have been published 
[7-9]; in brief, 147 participants were enrolled in the SATURN-HIV study (n=72 in the rosuvasta-
tin arm; n=75 in the placebo arm). Overall, the median age of the participants was 47 years, 78% 
were male, 70% were African American, 29% were Caucasian, and 1% were Hispanic. There were 
no differences in markers of GI-integrity or microbial translocation at baseline between the study 
arms. Among all participants, baseline plasma levels of LBP were directly related to plasma levels 
of: interferon gamma induced protein 10 (IP-10, r= 0.25, P=0.007); tumor necrosis factor alpha 
receptor-II (TNFR-II, r=0.2, P=0.03); markers of monocyte activation (sCD163, r=0.22, P=0.015); 
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endothelial cell activation (ICAM-1, r=0.19, P=0.04; VCAM-1, r=0.21, P=0.02); and the propor-
tion of CD4+ (r=0.21, P=0.03) and CD8+ (r=0.25, P=0.007) T cells that expressed HLA-DR and 
CD38 (Figure 1). Among participants in the statin arm, only the relationships between LBP and 
sCD163 (r=0.3, P=0.019) and LBP and IP-10 (r=0.27, P=0.034) were significant. Baseline levels 
of I-FABP were inversely related to IP-10 levels (r=−0.18, P=0.05, not shown). Baseline levels of 
zonulin did not correlate with any of the markers we measured. 

Figure 1. Plasma levels of lipopolysaccharide binding protein (LBP) are related to markers of immune 
activation in HIV-infected patients. Plasma samples were thawed and levels of (A) TNFr-II, (B) IP-10, 
(C) VCAM-1, (D) ICAM-1, and (E) sCD163 were measured by ELISA. Measurement of T-cell activation 
was performed by flow cytometry to assess surface activation markers (CD38, HLA-DR) on cryopreserved 
(F) CD4+ and (G) CD8+ T cells. Correlations between markers at baseline were determined using Spear-
man rank correlation, and lines were fitted to the data points using locally weighted regression (LOWESS). 
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Rosuvastatin treatment was associated with reduced levels of I-FABP, when compared to placebo, 
during the 48-week treatment period (β=−1078.80 pg/mL, P=0.04, Figure 2). As I-FABP levels 
decreased overtime in the statin arm, we eventually measured an inverse relationship between 
sCD163 and I-FABP (r =−0.21, P=0.02) at week 48, but this relationship was driven by outliers 
within the data. Rosuvastatin treatment did not affect levels of LBP or zonulin, yet, a relationship 
between sCD163 and LBP was maintained at week 24, but became insignificant at week 48, likely 
due to the flat levels of LBP and a significant decrease in sCD163 at week 48 within the statin arm.

 

Figure 2. Rosuvastatin treatment reduces levels of I-FABP, but not levels of zonulin or LBP. Plasma 
samples were thawed and levels of intestinal fatty acid binding protein (I-FABP), zonulin, and lipopolysac-
charide binding protein (LBP) were measured by ELISA. Rosuvastatin reduced levels of I-FABP over the 
study period compared to placebo. Levels of the other gut integrity markers did not change over time with 
statin treatment (not shown).

DISCUSSION 
The SATURN-HIV study is a double blind, randomized, placebo-controlled clinical trial of rosu-
vastatin as an immunomodulatory therapy in HIV-infected subjects on ART. We have reported 
that rosuvastatin decreases plasma and cellular markers of monocyte [8, 9] and T-cell activation 
[8], lowers vascular inflammation [7, 8], preserves renal function, and lowers cystatin C levels 
[23] in ART-treated HIV-infected persons. The direct mechanisms by which statin therapy im-
proves chronic immune activation in these study participants are not fully understood. 

Here we tested the hypothesis that rosuvastatin may modulate immune activation by improving 
the integrity of the GI tract and subsequently reducing microbial translocation. Bacterial products 
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derived from the gut lumen, and specifically plasma levels of LPS, are directly related to T-cell ac-
tivation (CD38 and HLA-DR expression) [15, 17], to levels of soluble CD14 [17], and to propor-
tions of CD16+ monocytes [17], and are inversely related to CD4+ T cell reconstitution following 
initiation of ART [24]. Alternatively, if levels of inflammation and immune activation can be 
reduced with rosuvastatin treatment, the GI tract may recover normal barrier function. Therefore, 
by looking at the changes in inflammatory markers and gut barrier integrity markers serially over 
time, we may be able to infer causality. 

Several markers of impaired GI-function have been measured in HIV-infected individuals [19, 
25]. Plasma levels of I-FABP are increased in HIV-infected donors compared to uninfected 
donors [20] and increased plasma levels of I-FABP may represent increased enterocyte death, 
which may contribute to impaired barrier function. Zonulin-1 is produced by viable gut epithe-
lial cells and plays a part in regulating paracellular intestinal permeability [21], and zonulin-1 
has been found to be upregulated in different immune diseases that are characterized by chronic 
inflammation of the gut, including celiac disease [26]. Zonulin-1 and I-FABP levels are predictive 
of mortality in persons infected with HIV [19], so favorable modulation of their expression may 
improve clinical outcomes. We did not find statistically significant changes in zonulin-1 between 
the statin arm and the placebo arm. Levels of I-FABP decreased during statin treatment, which 
may represent decreased enterocyte death; perhaps 48 weeks of statin therapy is not long enough, 
or the local anti-inflammatory effect of rosuvastatin treatment was not potent enough to repair 
the GI tract sufficiently to measure changes in zonulin levels.

Levels of LBP, produced by hepatocytes in the liver, may reflect an attempt by the host to bind 
translocated LPS and clear it from the circulation [27]. Levels of LBP are increased in HIV-in-
fected persons compared to uninfected controls [15] and LBP levels decrease following initiation 
of ART [28]. In our study, baseline levels of LBP were directly related to several markers of im-
mune activation and inflammation (sCD163, CD38, and HLA-DR on T cells, among others) in all 
participants. Over 48 weeks of therapy, many inflammatory markers decreased with statin treat-
ment [7-9], yet levels of LBP did not change significantly. Levels of sCD163 and LBP were directly 
related at week 24, but became insignificant at week 48, likely due to the flat levels of LBP and a 
significant decrease in sCD163 at week 48 within the statin arm. These baseline relationships did 
not persist over time, partially due to decreasing sample size (total population versus statin arm), 
but these results may also suggest that changes in microbial translocation and GI-function are not 
responsible for improvement in immune activation within these participants. This null result is 
made less surprising based on our recent findings that statin treatment reduces oxidized LDL (ox-
LDL) levels in these subjects [29], and that early changes in oxLDL levels were related to changes 
in soluble CD14 and intima-medial thickness of the carotid artery. This suggests that statin-me-
diated decreases in pro-inflammatory lipid profiles may be on the causal pathway for reduction in 
inflammation, monocyte activation, and cardiovascular disease in ART-treated HIV infection. 

While our results suggest that rosuvastatin treatment may not improve GI-tract permeability 
and result in decreased levels of microbial translocation, this current study has a few important 
limitations. First, we did not directly measure any microbial products (LPS, 16S rRNA, etc.) or 
their changes over time. These assays are technically complex and we chose not to perform them 
once we did not see significant changes in gut barrier markers. Second, binding and clearance of 
LPS from the circulation likely involves several mediators, including LBP, LPS binding antibod-
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ies (endoCab and secretory IgA), and lipid molecules [30]; measuring LBP alone likely does not 
provide a complete picture of the mechanisms of LPS clearance. We also did not directly measure 
endothelial cell/tissue structure, expression of gut barrier proteins, or the transcriptional profile 
of endothelial cells, which has been shown to be important in measuring GI permeability in HIV 
infection [31]. Further tests that directly measure barrier protein expression and/or GI perme-
ability by lactulose/mannitol absorption [32] would be required to definitively assess GI barrier 
function; these assays are not possible in the current study.

Overall, our findings suggest that decreases in inflammation and immune activation in 
ART-treated HIV-infected persons following rosuvastatin treatment are not likely attributable to 
decreases in microbial translocation and improvements in GI-barrier function. 
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