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ABSTRACT
Since the discovery of the first inhibitors of HIV replication, drug resistance has been a major 
problem in HIV therapy due in part to the high mutation rate of HIV. Therefore, the develop-
ment of a predictive animal model is important to identify impending resistance mutations and 
to possibly inform treatment decisions. Significant advances have been made possible through 
use of nonhuman primates infected by SIV, SHIV, and simian-tropic HIV-1 (stHIV-1), and use of 
humanized mouse models of HIV-1 infections. In this review, we describe some of the findings 
from animal models used for the preclinical testing of integrase strand transfer inhibitors. These 
models have led to important findings about the potential role of integrase strand transfer inhibi-
tors in both the prevention and treatment of HIV-1 infection.
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BACKGROUND
Simian immunodeficiency virus (SIV) is naturally endemic to a wide variety of African non-
human primates (NHPs). In its natural host, sooty mangabeys (Cercocebus atys; SM) and Afri-
can green monkeys (Chlorocebus sabaeus; AGM), SIV infection is nonpathogenic. Notably, SIV 
replicates actively in infected NHPs, but unlike HIV-1 infected individuals, these animals do not 
generally develop immunodeficiency-like symptoms [1, 2]. 

Following an accidental cross-species transmission of a variant of SIV termed SIVsm to rhesus 
macaques, a lethal disease was observed in these hosts with symptoms similar to AIDS [3-8]; this 
has given rise to the pathogenic SIVmac strain [5, 9]. Cross-species transmissions from chimpan-
zees and SMs to humans have given rise to HIV-1 and HIV-2, respectively [10-12]. Chimpanzees 
have been found to develop simian AIDS (SAIDS) when naturally infected with SIVcpz, a virus 
that infects Central African chimpanzees (Pan troglodytes troglodytes) [13]. Although HIV-1 and 
SIVcpz share a very high degree of similarity, chimpanzees are not convenient NHP models due 
to their endangered status and high maintenance costs.

SAIDS and human AIDS share similar symptoms that include acute and progressive loss of CD4+ 
T cells followed by immunodeficiency, opportunistic infections, and development of tumors [14]. 
Routes of transmission of SIV infections in chimpanzees and macaques are similar to HIV infec-
tions in humans and include mucosal spread via vaginal [15], rectal [16], and penile routes [17] 
or oropharyngeal transmission in neonates [18]. 

Through the use of highly active antiretroviral therapy (HAART), HIV-1 infection has become 
manageable and is often now a chronic disease. HAART provides treatment options for both 
treatment-naïve and treatment-experienced patients. There are six classes of antiretroviral agents 
that can be used, and these are often combined in treatment. These include nucleoside reverse 
transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), 
protease inhibitors (PIs), integrase strand transfer inhibitors (INSTIs), fusion inhibitors (FIs), and 
chemokine receptor antagonists (CCR5 antagonists). 

INSTIs are the most recent class of antiretroviral (ARV) drugs and include the FDA-approved 
agents raltegravir (RAL), elvitegravir (EVG), and dolutegravir (DTG). A new investigational 
INSTI, cabotegravir, which is an analog of DTG, is being developed as an oral tablet for once daily 
dosing and can be administered as a long-acting parenteral formulation (cabotegravir LA).

All integrase inhibitors approved to date inhibit the integration process [19, 20]. Integration into 
host cell DNA is the last step performed by the HIV and SIV integrase proteins before an irrevers-
ible infection takes place in a cell. Integration occurs via two reactions that are catalyzed by the 
viral integrase (IN) enzyme following reverse transcription. First, IN cleaves a dinucleotide from 
each viral DNA terminus (long terminal repeat [LTR]) to produce reactive 3′-end processed DNA 
(a step referred to as 3′ processing), which is then covalently linked to the host DNA in a process 
known as strand transfer [21, 22]. IN contains three domains: N-terminal, catalytic core (cc), and 
C-terminal domains. Each domain is essential for integration. The catalytic core domain encom-
passes the catalytic triad—Asp64, Asp116, and Glu152 (D64D116E152) —that coordinates two divalent 
metal cations (Mg2+ or Mn2+). INSTIs function by disrupting the interaction between IN and 
viral and/or target DNA and/or chelating metal ions in the catalytic core domain [23]. Sequence 
alignments of the IN proteins of different SIV isolates with various groups of HIV-1 show high 
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sequence conservation of the catalytic triad and key residues involved in resistance to INSTIs 
(Figure 1) [24]. Amino acids E92, T97, G118, F121, G140, Y143, S147, Q148, N155, and R263 are 
conserved among HIV-1, HIV-2, and different SIVs [25, 26].

Figure 1. Multiple amino acid sequence alignment of HIV-1 subtype B and different SIV integrases. 
The HIV-1 subtype B integrase sequence is provided as a reference. Identical amino acid residues that are 
conserved across all six proteins are marked with an asterisk (*); residues similar to each other are marked 
with a colon (:); those that are less similar are marked with a period (.); and those that are not similar 
are not marked. Catalytic triad residues (D64, D116, and E152) and residues involved in main resistance 
pathways against integrase inhibitors (T66, E92, T97, G118, F121 G140, Y143, S147, Q148, N155, and 
R263) are shaded in gray. The GenBank accession numbers for the sequences used in this alignment 
are DQ676870 (HIV-1 subtype B), DQ307022 (HIV-2) FJ424864 (SIVgorCP2139.1con), EF394356.1 
(SIVcpzTan1.910), M33262 (SIVmac239), and U58991 (SIVagmTan-1). The multiple sequence alignment was 
performed using Clustal Omega software [27-29].
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In clinical trials, four primary major resistance pathways confer cross resistance to RAL and EVG, 
and these include substitutions at positions E92Q, Y143R, Q148R/K/H, and N155H, as well as 
other mutations. Q148 plus two or more additional substitutions can also decrease the clinical 
efficacy of DTG [30]. 

ANIMAL MODELS 
Several key factors must be taken into account when choosing an animal model for the study of 
HIV-1 pathogenesis (Table 1). These include the use of the CD4 receptor and the use of either 
the CC-chemokine receptor 5 (CCR5) or the CXC-chemokine receptor 4 (CXCR4) as co-recep-
tors, nuclear export factors, transcription factors, and cellular host factors [31]. The most suitable 
animal models that have received broad acceptance in the HIV field include humanized mice, 
nonhuman primates (macaques), and to some extent cats. Although not commonly used, the 
feline model was valuable in the development of one of the most commonly used ARVs, tenofovir 
(TFV; NRTI) [32-35]. Previous research showed that feline immunodeficiency virus (FIV) DNA 
integration into the host cell genome can be inhibited by the INSTI naphthyridine carboxamide, 
L-870810, and this resulted in attenuated replication in the feline lymphoid cell line MBM [34, 
36]. Animal models are important for preclinical drug testing, the demonstration of the benefits 
of early treatment, and the significance of drug resistance mutations.

BLT and SCID-hu Mice
HIV-1 cannot ordinarily infect rodents due to the inability of the HIV-1 envelope (env) to utilize 
rodent cell surface molecules for binding and entry [37] and the inability of the murine cyclin T1 
protein to associate with HIV-1 Tat [38]. However, two mouse models have been developed that 
are now important tools for HIV research. The bone, liver, and thymus (BLT) model involves the 
transplantation of bone marrow, liver, and thymus tissues from humans into mice. Another model 
is the severe combined immunodeficiency (SCID-hu) mouse in which mice are homozygous for 
the SCID defect [39, 40]. This model is constructed by implanting human fetal liver and thymus 
under the mouse kidney capsule. Since tissue transplantation allows for HIV-1 to infect mice, 
many aspects of HIV-1 pathogenesis, transmission, and tissue dissemination can be addressed 
using these models. 

Following infection with CCR5- or CXCR4-tropic HIV, successful reproduction of HIV-1 patho-
genesis in humanized mice with substantial plasma viremia and systemic depletion of human 
CD4+ T cells was observed [41, 42].
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Table 1. Advantages and disadvantages of surrogate models and challenge viruses for HIV-
1 Infection

Surrogate  
Models for HIV-

1 Infection

Advantages and Uses Disadvantages

Cat •	 Sensitivity of FIV RT in infected cats to adefovir (N[t]
RTI) helped lead to the development of Tenofovir 
[35, 43, 44]

•	 Susceptible to integrase inhibitors [33, 34]

•	 Limited sensitivity to NNRTIs 
and PIs [45]

•	 Lacks certain genes found in 
HIV (vpr, vpu, Tat, nef)

•	 Uses CD134 as a primary re-
ceptor instead of CD4 [46]

•	 FIV can infect CD8+ T cells 
and B cells 

Humanized mice •	 Direct injection using HIV-1

•	 Informative studies demonstrating the efficacy of 
antiretroviral therapy [47-51]

•	 Limitation for studying muco-
sal transmission of HIV-1

•	 Cannot fully recapitulate dy-
namics of HIV-1 pathogenesis

•	 Cannot be bred

•	 These animals are immuno-
compromised before initiation 
of studies

Nonhuman primates 
(macaques)

•	 Infection progresses to simian AIDS

•	 Establishment of viral reservoirs

•	 Documentation of elite controllers and long-term 
nonprogressors

•	 Virological suppression achieved when ARVs are 
used

•	 Pigtail macaques mimic the menstrual cycle of hu-
mans

•	 Early seeding of viral reservoirs prior to viremia [52]

•	 Disease progression can be 
faster than in humans

•	 SIV and SHIV replication 
efficiency and pathogenesis are 
species dependent 

(Table continued on the next page)
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Challenge Virus Advantages and Uses Disadvantages
SIV •	 Sensitive to INSTIs [25, 26, 53]

•	 Can be used for preclinical selection for integrase 
resistant mutants [53, 54]

•	 Utilizes CD4+ CCR5 T cells for replication

•	 Limited sensitivity to NNRTIs 
and PIs [26, 55]

•	 Encodes for vpx and not the 
vpu accessory gene

•	 Lower sequence homology in 
some genes than for HIV

•	 Inability to replicate in human 
cells/cell lines

•	 Most SIVs cannot use CXCR4

•	 Pathogenesis is species depen-
dent

SHIV •	 RT-SHIVs (contain HIV-1 RT gene) are sensitive to 
NNRTIs 

•	 Can investigate CCR5 and/or CXCR4 inhibitors and 
HIV-based vaccines using Env-SHIV (R5 and X4 
tropic) 

•	 Env-SHIV can be used to study early events following 
transmission

•	 Lower sequence homology in 
some genes than for HIV

•	 Pathogenesis is species depen-
dent

Simian tropic-HIV 
(stHIV-1)

•	 Genome is 88% HIV-1 derived [56]

•	 Ability to infect and replicate in both human and 
rhesus cells by evading restriction factors [56, 57]

•	 Inability to initiate peritoneal 
infection of various macaques 

Nonhuman Primate Models
The use of animal models has helped in the preclinical evaluation and development of antiretro-
viral therapy (ART) and potential vaccines. Despite their genetic proximity to humans that makes 
them ideal as animal models for infectious diseases, the utilization of chimpanzees and gorillas 
poses ethical, scientific, and economic problems, with the use of the former having been mostly 
restricted for study of hepatitis B, C, and E viruses [58, 59]. Three macaque species have been 
widely used to investigate aspects of SIV infection that include viral dynamics, immune respons-
es, and changes in CD4+ T cells to shed light on mechanisms of HIV-1 pathogenicity, transmis-
sion, prevention, and therapy. Although macaques are genetically more distant from humans than 
chimpanzees, they are widely used because they are small, easy to handle, and immunologically 
similar to humans. These species are rhesus (Macaca mulatta), cynomolgus (Macaca fascicularis), 
and pigtail (Macaca nemestrina) macaques [44]. These nonhuman primates are also anatomical-
ly and genetically closer to humans than cats and mice. Rhesus macaques are seasonal breeders, 
whereas pigtail macaques are similar to humans with lunar menstrual cycles and changes in 
hormone levels [60]. As a result, pigtail macaques are more suited than other macaques to capture 
potential fluctuations in susceptibility to SIV infection that are associated with different phases of 
the menstrual cycle [61-63].
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All the aforementioned species are susceptible to SIV infection and develop AIDS-like disease, 
but rhesus macaques have been most widely used for SIV infection and have provided insights to 
viral transmission, pathogenesis, and latency [3, 64]. A low-dose virus challenge macaque model 
has several advantages that include the following features: a simian-human immunodeficiency 
viruses (SHIV) inoculum dose similar to physiological HIV-1 RNA levels found in semen, twice 
weekly virus challenges to mimic high-risk human exposure, and a SHIVSF162p3 isolate that utilizes 
an R5-tropic envelope similar to that found in most HIV-1 transmissions [65-68]. Intrarectal SIV 
challenge of rhesus macaques has demonstrated that the viral reservoir is rapidly seeded prior to 
viremia in macaques even when animals were treated with suppressive antiretroviral drugs short-
ly after infection [52].

SIMIAN VIRAL AND CHIMERIC CONSTRUCTS
SIV and chimeric viral constructs have been engineered with different HIV genes cloned into 
SIV backbones to yield SHIVs [69]. The reverse has also been done, giving rise to simian-tropic 
HIV (stHIV-1) [56]. The genomic organization of HIV-1, HIV-2, SIV, SHIV and stHIV-1 viral 
genomes is shown in Figure 2.

The HIV genome contains three major genes that encode major structural proteins and enzymes 
essential for replication: gag, pol, and env. In addition, the HIV genome contains the essential reg-
ulatory elements, tat and rev, as well as accessory regulatory proteins, nef, vpr, vif, and vpu. SIV 
has a similar genetic makeup as HIV except that it lacks the vpu gene. It encodes an additional 
vpr-related protein that is termed vpx that functions in association with vpr. Similar to HIV, SIV 
is unable to replicate unless integration of viral DNA takes place. Although most HIV-1 and SIV 
isolates use the CCR5 co-receptor to gain entry into cells, HIV-1 can acquire the ability to utilize 
CXCR4, whereas SIV rarely gains this ability but can utilize other co-receptors [70]. Some of the 
advantages and disadvantages of different viral strains and constructs are highlighted in Table 1.

The SIV/SHIV macaque model has been shown to be superior to mouse models and other non-
human primates. Both HIV and SIV infections share similarities that include: 1. viral replication 
is suppressed by ART; 2. reservoirs of latently infected cells can persist post ART; 3. the course of 
viremia is characterized by an acute peak followed by a post-peak decline [71]; 4. viral transmis-
sion can occur through vaginal and rectal routes, mimicking the sexual transmission of HIV-1, or 
by oral routes, mimicking the transfer of virus via breast milk from mother to child; 5. the prima-
ry targets of infection are memory CD4+ CCR5+ T cells; 6. the major restriction factors that pro-
tect cells against viral replication are similar (e.g., tetherin, APOBEC3, SAMHD1, and TRIM5α); 
7. there are both elite controllers and long-term nonprogressors [71]; 8. life-threatening opportu-
nistic infections are associated with progressive failure of the immune system.
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Figure 2. Schematic diagram of the genomic organization of HIV-1, HIV-2, SIV, stHIV-1 and SHIV vi-
ral genomes. HIV-1/SIVcpz encodes the vpu gene but lacks the vpx gene. HIV-2/SIVmac encodes vpx but 
not vpu. The gag polyprotein encodes matrix (MA), capsid (CA), and nucleocapsid (NC). The pol genomic 
region encodes the viral enzymes protease (PR), reverse transcriptase (RT), and integrase (IN). Gray- and 
black-shaded boxes indicate SIV- and HIV-derived sequences, respectively. Abbreviations: SIV, simian 
immunodeficiency virus; stHIV-1, simian-tropic human immunodeficiency virus; SHIV, simian-human 
immunodeficiency virus; SIVcpz, chimpanzee-derived; SIVmac, macaque-derived; RT, reverse transcrip-
tase; LTR, long-terminal repeat; env, envelope glycoprotein.

SIV
The two most commonly used challenge SIV strains in nonhuman primates are SIVmac251 and 
SIVmac239, which were isolated from their natural host, the rhesus macaques. These viruses are 
able to cause high viral loads with minimal variations between animals. SIVmac239 was derived 
from SIVmac251 by animal passage and tissue culture proviral DNA cloning [9]. These viruses 
are widely used since they are susceptible to NRTIs, some PIs, and INSTIs, while showing relative 
lack of sensitivity to NNRTIs [25, 26, 55]. 

A three-dimensional (3D) structure solved by X-ray diffraction with a 3 Å resolution of the SIV-
mac251 IN containing the solubility mutation F185H shows a contiguous core and DNA-bind-
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ing domain (DBD) encompassing amino acid residues 50-293 (containing the catalytic core and 
C-terminal) in a single polypeptide chain (Protein Data Bank [PDB] ID 1C6V) [72, 73]. This 
structure shows high conservation of secondary structures (specifically in the catalytic core do-
main) in comparison to other retroviral Ins, including HIV-1 IN [72]; the susceptibility of SIV to 
different INSTIs can be attributed to the conservation of the catalytic core domain and key resi-
dues of IN.

SHIV Expressing HIV-1 env
SHIVs expressing HIV-1 env have been widely used as challenge viruses for testing the efficacy 
of potential vaccines, topical microbicides, entry inhibitors, and fusion inhibitors to block viral 
transmission. Different SHIV viruses were designed to answer key aspects of HIV-1 replication 
and infection. SHIVs have also been used to assess ARVs. In recent experiments, SHIVs utiliz-
ing any of CXCR4, CCR5, or both as co-receptors have been studied. SHIV89.6P is a pathogenic 
CXCR4 tropic SHIV clone that contains tat, rev, vpu, and the env gene of HIV-1 in a SIVmac239 
background [74]; this SHIV displays a different phenotype in macaques compared to HIV-1 and 
SIV infections in humans and macaques, respectively [75]. The CCR5-tropic virus, SHIV162P3 
(SIVmac239 backbone with an HIV-1 subtype B CCR5 tropic envelope [76]), is a virus transmis-
sible in rhesus macaques by mucosal (vaginal and rectal) and parental routes of inoculation. 

Simian-tropic HIV (stHIV)
Animal models may allow for the direct study of drug resistance mutations (DRMs) and their 
effect on treatment success [77], but there is no model that recreates all aspects of HIV infection 
in humans [56]. By replacing the HIV-1 capsid (CA) and vif regions of the genome with the cor-
responding counterparts from SIVmac239 [56, 78, 79], the HIV-based chimera (stHIV-1(SCA,SVIF)) 
is capable of infecting human and macaque cell lines by escaping various restriction factors, in 
particular TRIM5α and APOBEC3G [56]. Few amino acid substitutions and few silent mutations 
in the gag and pol genes are present in the chimeric viral construct [56]. Since the active site of the 
integrase coding region of HIV-1 is conserved in stHIV-1, the latter has been used in studies on 
INSTIs and DRMs [57].

Integrase Inhibitors
Animal models have provided important information with regard to the prophylactic efficacy of 
oral and topical pre-exposure prophylaxis (PrEP) with ARV drugs when animals were challenged 
through different routes of mucosal exposure. These models have permitted the investigation of 
parameters that affect ARV efficacy, such as drug resistance, drug pharmacokinetics, and pharma-
codynamics. 

Early studies showed that EVG suppressed the replication of SIV in vitro and had antiviral activity 
against SIV (0.5 nM [nanomolar]) [80]. In vitro studies also showed that SIVmac239 was suscepti-
ble to various INSTIs at nM IC50 concentrations, and IN mutant viruses and purified recombinant 
SIVmac239 IN enzymes displayed similar resistance profiles as did HIV-1 in regard to RAL, EVG, 
and DTG [24, 54]. This has included studies of the major RAL and EVG resistance pathways that 
include mutations at positions Y143, Q148R, and N155H in IN [24, 54]. DTG was shown to be 
more potent against IN mutant viruses and purified recombinant SIVmac239 IN enzymes than 
RAL and EVG [24, 54]. Tissue culture selection experiments performed using rhesus peripheral 

http://www.PaiJournal.com


Pathogens and Immunity - Vol 1, No 1

www.PaiJournal.com

50

blood mononuclear cells (PBMCs) infected with SIVmac239 led to the emergence of R263K and 
E92Q mutations in IN for DTG and EVG, respectively [24, 54]. R263K is a non-polymorphic 
mutation that has also been found in several INSTI-naïve ART-experienced patients who received 
DTG as therapy after failing other drugs [81] and as a secondary mutation after failure with RAL 
and EVG [82, 83]. E92Q has been characterized as a non-polymorphic mutation that can be se-
lected in patients receiving either EVG [84-88] or RAL [83, 84, 89] and is associated with virolog-
ical failure on EVG-based regimens [89].

Previous in vitro studies have shown that stHIV-1 and HIV-1 also share similarities with regard 
to the impact of DRMs on resistance against INSTIs and on viral replicative capacity after the 
introduction of relevant resistance-associated substitutions into stHIV-1 [57]. The G118R and 
R263K IN substitutions were the most detrimental substitutions regarding stHIV-1 infectivity and 
replication capacity, which has also been observed for HIV-1 [90-95]. The E92Q, G118R, Y143R, 
N155H, and R263K substitutions in stHIV-1 conferred similar levels of resistance against INSTIs 
as in HIV-1 [91-99].

Raltegravir (RAL)
The efficacy of L-870812, an INSTI, was evaluated in rhesus macaques infected with SHIV89.6P and 
the integrase-coding genes of viruses isolated from both treated and untreated macaques have 
been sequenced [53]. The first report of antiviral activity of an integrase inhibitor (L870812) in 
SHIV-89.6P-infected rhesus macaques showed that this drug exhibited antiviral activity against HIV 
and SIV with IC95s of 250 and 350 nM, respectively [53]. Macaques treated early with L-870812 
exhibited minimal/transient decreases in CD4 cells; four of six animals were virally suppressed to 
undetectable levels, while the other two treated animals did not achieve suppression but showed 
no decline in CD4 cell count and maintained low viral loads [53]. In contrast, animals treated 
later with L-870812 showed both reductions in viral load and decreases in CD4 cell count [53]. In 
the untreated arm, the integrase coding sequence remained unchanged, whereas N155H-harbor-
ing viruses were detected as early as 25 days in the treatment arm in the absence of noticeable vi-
ral RNA rebound or CD4 cell depletion [53]. When the N155H substitution was introduced into 
an HIV-1 HXB2 plasmid, N155H mutant viruses displayed both drug resistance and a reduction 
in infectivity [53].

Another study determined the safety of hematopoietic stem cell transplantation in ART-sup-
pressed and unsuppressed animals [100]. In this study, they investigated the development or lack 
of ARV resistance after bone marrow transplantation in three groups of pigtail macaques treat-
ed with a combination of ART that includes RAL (group 1: challenged with SHIV-1157ipd3N4 
[R5-tropic SHIV]) but no bone marrow transplant (control group); group 2: transplanted subse-
quent to SHIV challenge; group 3: challenged with SHIV post-transplant [100]. In the group 3 
animals, the N155H mutation was detected within 3-9 weeks of ART initiation, and the N155H 
mutation was present in 71% of total IN sequences [100]. This study has some implications for 
scheduled treatment interruption studies in patients on ART post-bone marrow transplants, 
including an incomplete transplant recovery, and potential impaired viral control resulting from 
premature scheduled treatment interruption that may promote drug resistance [100]. 

Investigators have also evaluated topical prophylaxis using integrase inhibitors (L-870812 or RAL) 
in PrEP and post-exposure prophylaxis (PEP) in repeat low-dose vaginal challenge macaque stud-
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ies [101]. To assess the window for inhibition by reverse transcriptase inhibitors and integrase 
inhibitors, the group performed time of drug addition experiments using HeLa-derived TZM-
bl cells using a single cycle infection with vesicular stomatitis virus (VSV)-pseudotyped HIV-1 
[101]. Reverse transcription occurred 1-2 hours post infection and integration more than 6 hours 
after infection. In this study, TFV conferred high levels of protection (> 95%) up to 2 hours after 
infection and ~50% protection when added 5 hours after infection, while RAL provided high pro-
tection levels (>90%) when given at 6 hours post infection and more than 50% protection when 
administered at 10 hours post infection [101]. The authors concluded that INSTIs may be more 
suitable candidates than reverse transcriptase inhibitors for prophylaxis. RAL was also examined 
as a topical integrase inhibitor in vivo after vaginal SHIV challenge. During a 10-week follow-up 
period, five of six macaques treated with RAL gel 3 hours post SHIV exposure remained uninfect-
ed, even after 20 weeks, whereas all four macaques that received placebo gel became infected by 
week 10 [90]. Sequence analysis of the integrase gene of the breakthrough RAL infection revealed 
wild-type genotypes despite twice weekly dosing for 8 weeks after infection [101]. The group also 
documented rapid vaginal absorption of RAL demonstrating a short pharmacological lag time; 
they also noted substantial reductions in vaginal viral load in the breakthrough infection after 
RAL gel treatment [101]. This study eloquently showed that protection could be achieved and 
that strand transfer inhibitors have a selective advantage over RT inhibitors since they provide an 
optimal window for post-coital dosing, which was not a viable option with entry or RT inhibitors 
[102, 103]. 

Treatment of SIVmac251 in cultured MT-4 and CEMx174 cell lines by RAL showed inhibition 
with IC50s in the low nM range [25]. RAL-monotherapy (50 or 100 mg RAL twice daily with food) 
of SIVmac251-infected rhesus macaques for 10 days resulted in a decrease in viral load [25], while 
the addition of emtricitabine (FTC) and TFV to the treatment led to undetectable viral loads and 
CD4 cell increases within 2 weeks [25]. However, proviral DNA levels did not change and persist-
ed in PBMCs during the treatment period, indicating the persistence of viral reservoirs [25].

MOUSE STUDIES
In an early study with humanized mice, L-870812 displayed similar outcomes as in humans, caus-
ing suppression of viremia below the limits of viral RNA detection and recovery of CD4+ T cells 
[104]. In this same study, an interruption of ART resulted in viral rebound and loss of CD4 T cells 
[104]. The authors also reported that treatment failure was associated with the appearance of drug 
resistance mutations with one of six INSTI-treated mice acquiring mutations associated with RAL 
resistance at positions D55N, E92Q, E152I, and M154I within IN [104]. As mentioned above, 
E92Q is a mutation that is associated with resistance to RAL in humans [83, 84, 89]. Substitutions 
at position E152 in IN are significant since this residue is part of the catalytic triad that facilitates 
binding of Mg2+ to the active site; if the IN viral protein is inactive as a result of mutations at this 
position, then the integration step will not take place and viral replication may be arrested.

RAL was also examined to determine its potential as a candidate for PrEP [49]. Whereas all of the 
untreated control infected mice became virus positive within 5 weeks following vaginal challenge 
with HIV-1 BaL-1, oral administration of RAL fully protected humanized mice [49]. No evidence 
of infection in treated mice was detected during a 10-week period of evaluation [49]. Moreover, 
no viral RNA in plasma or proviral DNA in cellular fractions was detected using PCR [49]. 
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Recently, the efficacy of long-acting (LA) RAL to protect against vaginal HIV transmission in a 
PrEP study was investigated. Using transmitted/founder HIV, researchers observed that a single 
subcutaneous administration of LA RAL to BLT mice provided protection against two high dose 
HIV challenges at 1 and 4 weeks after drug administration [105]. Researchers also demonstrated 
penetration of RAL into the female reproductive tract. In addition, these studies documented 
viral RNA suppression in plasma and in the cervico-vaginal fluids of BLT-infected mice [105]. In 
mice infected with HIV-1CH040 and HIV-1RHPA transmitted/founder (T/F) viruses did not possess 
detectable mutations were detected in viral DNA derived from plasma. In the case of one infected 
mouse infected by a HIV-1THRO T/F virus, a single amino acid substitution, I268L, was identi-
fied in the integrase gene [105]; although the aforementioned mutation has not previously been 
associated with RAL resistance [106], one patient receiving RAL treatment did develop a I268M 
substitution in addition to T97A, Y143R, and other substitutions [107].

Similar trends were seen when studies on mucosal tissue pharmacokinetics of RAL in humanized 
mice were carried out as in human studies; RAL exhibited higher drug exposure in vaginal and 
rectal tissues relative to plasma and higher exposure in intestinal mucosa than in plasma [51].

Elvitegravir
Elvitegravir (EVG) alone is not widely used in animal studies since it was originally approved 
as part of the fixed dose combination known as Stribild (combination of elvitegravir/cobicistat/
emtricitabine/tenofovir disoproxil fumarate), and researchers were mostly interested in identify-
ing drug resistance, drug pharmacokinetics, and pharmacodynamics of single formulation drugs 
[88]. However, EVG was recently approved by the FDA as a single pill formulation for ARV-ex-
perienced patients [108]. While EVG alone may not have been used in PrEP or monotherapy 
studies using animal models, pharmacokinetic studies showed that the drug attained higher 
penetration levels in rectal and vaginal fluids in rhesus macaques despite the absence of pharma-
cological boosting than were achieved with RAL or DTG [109]. Rectal secretions collected from 
EVG-treated macaques showed higher antiviral activity than did those from DTG- or RAL-treat-
ed mice in TZM-bl cell assays [109].

Cabotegravir
Cabotegravir (CTG), a DTG analog, is another INSTI currently under development that possess-
es favorable pharmacokinetics, safety, and efficacy profiles in the clinic [110-112]. While DTG 
possesses conformational flexibility (6-membered ring) of the metal-chelating scaffold, CTG has 
a more rigid scaffold (5-membered ring). The half-life of a long-acting (LA) form of CTG was 
shorter in macaques (3 to 12 days) than in humans (21-50 days) [110, 113]. CTG exhibited high 
potency against HIV-1 BAL strains in human PBMCs [113]. Due to its high potency, slow metab-
olism, and highly protein bound, CTG lends itself to use as a LA injectable suitable for monthly 
to quarterly clinical administration [110, 113, 114]. CTG formulation is also being developed as a 
single agent for PrEP. In animal studies, the LA form of CTG has been shown to protect macaques 
from repeated low dose intrarectal SHIV challenges, thereby demonstrating proof of concept of 
LA CTG in PrEP [115]. Eight macaques were intramuscularly injected with 50 mg/kg of CTG 
LA at two time points (before and after challenge) before intrarectal SHIV162p3 repeated challenge 
[115]; whereas treated macaques remained aviremic during the challenge and wash-out periods, 
untreated macaques became infected following challenge [115].

http://www.PaiJournal.com


Pathogens and Immunity - Vol 1, No 1

www.PaiJournal.com

53

Another experiment was performed to determine the minimal drug level needed to achieve pro-
tection following low dose intrarectal SHIV challenge. Treated macaques were injected once per 
week before SHIV challenge, while control macaques did not receive any treatment [115]. Control 
macaques became infected after 1-2 virus challenges, while treated animals were infected only 
after 6-17 virus challenges, which coincided with a decline in plasma drug concentrations [115]. 
Cell-free plasma samples from CTG-treated macaques were also analyzed for integrase amino 
acid substitutions. Although no primary integrase resistance mutations were observed, substitu-
tions at positions G27R, A122T, E173K, and D256E were detected [115]. It has been postulated 
that once monthly intramuscular injection of CTG (50 mg/kg) might be able to reach the same 
high plasma drug concentrations that are achieved in humans following an 800-mg intramuscular 
injection [115].

In another experiment, it was shown that a single dose of LA CTG delayed infection in repeated 
high-dose intravaginally SHIV-challenged macaques [116]. Animals receiving placebo became 
infected at 1 to 2 weeks post SHIV162P3 challenge, whereas protection was observed for 6 of 8 
CTG-LA-treated rhesus macaques against three high-dose SHIV challenges (on weeks 1, 5, and 
7 following LA CTG intramuscular injection) [116]. Consensus sequence analysis of the SHIV 
integrase-coding regions from the plasma of infected treated macaques identified P142S and 
I210V on different genomes at weeks 11 and E198G at week 20. These mutations did not decrease 
susceptibility to CTG in vitro [116]. Of the three mutations identified, E198 and P142 are both 
conserved in HIV-1 integrase. Substitutions at positions 198 and 142 have been previously report-
ed in patients receiving RAL [89, 117, 118]. 

In agreement with the aforementioned study, another group demonstrated that monthly injec-
tions of CTG provided complete protection against repeated intravaginal SHIVSF162p3 challenges 
in pigtail macaques [119]. In this study, female pigtail macaques were intravaginally challenged 
with SHIV162P3 twice per week for up to 11 weeks [119]. All of the placebo controls became in-
fected while all macaques that received CTG LA intramuscularly were protected from infection 
and remained seronegative as well as seronegative for viral RNA and DNA for more than 22 virus 
challenges [119]. Both of these studies support the clinical development of CTG LA as a PrEP 
candidate to prevent HIV infection.

CONCLUSIONS
Animal models have been essential for answering key questions pertaining to antiretroviral ther-
apy, including studies on treatment interruption, tissue biopsies to study cells and tissues, change 
of regimens, drug resistance-associated mutations, and investigation of novel classes of antiret-
roviral drugs. Because new anti-HIV drugs still need to be developed to combat drug resistance, 
the use of non-human primates, humanized mice, and other animal models of viral infection will 
continue to be essential for this endeavor, as well as for studies on viral pathogenesis.
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