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ABSTRACT
Background: Identifying host determinants associated with HIV reservoir size and timing of viral 
rebound after an analytic treatment interruption (ATI) is an important step in the search for an 
HIV functional cure. We performed a pooled analysis of 103 participants from 4 AIDS Clinical 
Trials Group ATI studies to identify the association between HLA class I alleles with HIV reser-
voir size and viral rebound timing. 

Methods: Total HIV DNA and cell-associated HIV RNA (CA-RNA) were quantified in pre-ATI 
peripheral blood mononuclear cell samples, and residual plasma viremia was measured using 
the single-copy assay. HLA class I typing was performed, and we generated an odds ratio (OR) of 
predicted HLA effect on HIV viremia control for each individual and compared this with time to 
viral rebound, and levels of HIV DNA and CA-RNA. 

Results: There was no significant association between the HLA ORs and levels of HIV DNA or 
CA-RNA, but carriage of protective HLA-B alleles (lower OR scores) was associated with de-
layed viral rebound (P = 0.02). Higher OR scores at the HLA-C locus were associated with longer 
duration of ART treatment (P = 0.02) and this trend was also seen with the combined OR score 
(P < 0.01). Individuals with protective HLA-B alleles had delayed viral rebound after treatment 
interruption that was not explained by differences in baseline reservoir size. 

Conclusions: The results indicate the vital role of cellular host immunity in preventing HIV 
rebound and the importance of taking into account the HLA status of study participants being 
evaluated in trials for an HIV cure.
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INTRODUCTION
Although antiretroviral therapy (ART) is effective at suppressing HIV replication in infected 
individuals, the virus persists in a stable pool of resting CD4+ T cells in the form of latent provi-
rus that almost inevitably rebounds when treatment is stopped [1]. Eradication of HIV-1 disease 
necessitates the elimination of this latent reservoir, and identifying host determinants associated 
with latency and reservoir size in patients receiving ART is an important step in the search for an 
intervention that provides sustained, long-term ART-free virological remission [2]. 

One of the main host genetic determinants that influences the control of HIV and disease pro-
gression is the human leukocyte antigen (HLA) class I locus [3]. Specific HLA class I alleles like 
HLA-B*57 and B*27 have consistently been shown to display protective effects and are associat-
ed with viral load control and delayed progression to AIDS [4, 5], while the allelic group HLA-
B*35Px is associated with accelerated disease progression [6]. A combined analysis of 9 HIV 
cohorts has since provided additional details for HLA class I allele-specific effects in maintain-
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ing HIV control [7]. Using the results from that study, we examined the association between alleles 
at 3 HLA class I loci (HLA-A, B, and C) and both reservoir size and viral dynamics after treatment 
interruption in participants of the AIDS Clinical Trials Group (ACTG) who underwent an analytic 
treatment interruption (ATI). Identifying host genetic factors influencing the size of the infected cell 
population will provide insights into the mechanisms behind viral control after treatment interrup-
tion with implications for the efforts to induce ART-free HIV remission. 

METHODS
Study Population 
Participants from 4 ACTGATI studies (A5024 [8], A5068 [9], A5170 [10], and A5197 [11]) were 
included if they were receiving suppressive ART, received no immunological interventions (eg, ther-
apeutic vaccination), had HIV-1 RNA less than 50 copies/mL at the time of ATI, and had samples 
available for HLA typing. These participants received ART during chronic infection and have been 
previously described in an analysis showing the virological predictors of HIV rebound timing [12].  
Written informed consent was provided by all study participants for use of stored samples in HIV-re-
lated research. This study was approved by the Partners Institutional Review Board.

Human leukocyte antigen typing
HLA class I typing was performed following the PCR-SSOP (sequence-specific oligonucleotide prob-
ing) and the PCR-SBT (sequence based typing) protocols recommended by the 13th International 
Histocompatibility Workshop (http://www.ihwg.org). Each HLA allele was assigned an odds ratio 
(OR) for its effects on HIV disease progression based on a previously published multivariable logistic 
regression analysis of HIV-1 controllers and non-controllers (Supplementary Table 4) [7]. Controllers 
refer to HIV-1 infected individuals whose mean viral loads are maintained at less than 2,000 copies/
mL of plasma despite not receiving ART. Non-controllers refer to individuals whose mean viral loads 
surpass 10,000 copies/mL. Based on this model, alleles with OR values less than 1 are associated with 
the protective phenotype seen in controllers while OR values greater than 1 are associated with the 
unfavorable phenotype of rapid disease progression. For our analysis, alleles that did not reach signif-
icance in the model were given an OR value of 1 and defined as neutral. For each participant, the OR’s 
of the 2 alleles in each HLA locus were multiplied to calculate ORA, ORB, and ORC for the HLA-A, 
B, and C locus, respectively. The OR scores for all loci were also multiplied to produce a cumulative 
OR score (ORABC) to reflect the combined effects of all HLA alleles. All HLA B*35Px group alleles 
(B*3502, 3503, 3504, and B*5301) [6] were assigned the same OR values as B*3502.

As a sensitivity analysis, participants were also grouped into 3 discrete categories: protective, neutral, 
or unfavorable groups. Participants with at least 1 protective and no unfavorable alleles were catego-
rized as having “protective” HLA genotypes, those with at least 1 unfavorable allele and no protective 
alleles were categorized as “unfavorable”, and those with 1 protective and 1 unfavorable allele or those 
with neither protective nor unfavorable alleles were categorized as “neutral”. Categorization of alleles 
was based on the previously described OR values [7]. HLA-B*57/27 alleles were considered protective 
regardless of the last 2 digits, and HLA-B*35Px were considered unfavorable for all races. 

HIV-1 reservoir quantification
Cell-associated HIV-1 RNA (CA-RNA) and DNA were isolated from cryopreserved PBMCs using the 
AllPrep DNA/RNA Mini Kit (Qiagen). Cellular integrity for RNA analysis was assessed by the mea-
surement of total extracted RNA and evaluation of the IPO-8 housekeeping gene [13]. Unspliced CA-
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RNA and total HIV DNA were quantified using a real-time PCR approach with primers/probes 
targeting conserved regions of HIV LTR/gag as previously described [14]. 

CD4+ cell count and pre- and post-ATI viral load measurements
The CD4+ cell count before ATI and plasma HIV-1 RNA were defined as the most recent mea-
surements on or before the date of ART discontinuation. The timing of viral rebound was defined 
as a confirmed viral load ≥ 200 copies/mL or (2) a single viral load ≥1000 copies/mL. Viral load 
set point was defined as the mean viral load between weeks 12 and 16. The timing of viral re-
bound was categorized as early (≤ 4 weeks), intermediate (5 to 8 weeks), or delayed (> 8 weeks) 
after ATI.

STATISTICAL ANALYSIS
Associations between OR scores (ORA, ORB, ORC, and ORABC) and reservoir size measurements 
or viral rebound times were analyzed using Spearman correlation, Kruskal-Wallis, Wilcoxon rank 
sum, and Fisher’s exact tests. Associations between categorical HLA-groups and reservoir size 
measurements or viral rebound times were also analyzed using Fisher’s exact tests. 

RESULTS
Study participants and baseline characteristics
A total of 103 participants were included from the pooled ACTG studies with ATI. Table 1 lists 
their baseline characteristics. Participants in this study had a median age of 42 years, 90% were 
male, and 83% were white. The median (Q1, Q3) CD4+ cell count at the start of ATI was 843 (687, 
1042) cells/µL. Participants had received ART for a median of 5.3 years.

There were no significant associations between background characteristics and the estimated 
effect of each HLA locus individually (ORA, ORB or ORc) and the overall effect (HLAABC) scores, 
with the exception of ART duration (Supplementary Tables 1-3). A positive correlation was 
detected between ORABC and the duration of ART (Spearman r = 0.26, P < 0.01, Figure 1), indi-
cating that participants harboring HLA alleles associated with greater risk of HIV non-control 
had been treated with ART for a longer period of time. A similar trend could be seen for each 
of the individual HLA loci, but only the ORc analysis reached statistical significance (Spearman 
r = 0.24, P = 0.01). These results were consistent with the categorical analysis where protective 
HLA-C alleles were associated with a shorter duration of ART (protective vs neutral: median 2.5 
vs 5.3 years, exact Wilcoxon P < 0.01; protective vs unfavorable: median 2.5 vs 5.8 years, Wilcoxon 
P < 0.01).

Protective effect of HLA is associated with delayed viral rebound timing
Participants with delayed viral rebound were found to have significantly more protective HLA-B 
alleles (lower ORB scores) compared to those with early or intermediate rebound times (early vs 
delayed: median ORB 1 vs 0.6, P = 0.02; intermediate vs delayed: median 1.35 vs 0.6, Figure 2). 
These results were consistent with the categorical analysis, which showed that there were signifi-
cant differences in the distribution of viral rebound timing by HLA-B category (P = 0.02, Supple-
mentary Figure 1). The results were largely unchanged with the single ≥ 1,000 HIV-1 RNA copies/
mL definition of viral rebound. No significant associations were found in the protective effect of 
the HLA alleles and either pre-ATI levels of HIV DNA, CA-RNA, or the post-ATI viral load set 
point. 
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Table 1. Baseline characteristics of participants included in the study.

Characteristic Total (N=103)

Sex, male, n (%) 93 (90%)
Age, median years (Q1, Q3) 42 (38, 50)
Race/Ethnicity, n (%)
       White 85 (83%)
       Black 18 (17%)
Nadir CD4+ cell count, median cells/µL (Q1, Q3) 422 (351, 544)
Pre-ATI CD4+ cell count, median cells/ µL (Q1, Q3) 850 (686, 1048)
Duration of ART, median years (Q1, Q3) 5.3 (3.2, 6.6)
NNRTI-based ART 65 (63%)
Source study, n (%)
       A5024 7 (7%)
       A5068 12 (12%)
       A5170 62 (60%)
       A5197 22 (21%)

NNRTI, non-nucleoside reverse transcriptase inhibitor; ART, antiretroviral therapy
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Figure 1. Correlation between ORABC and duration of ART. ORABC represents an overall assessment of 
protective status and is calculated by multiplying the ORs of HIV control of all 6 alleles at the A, B, and C 
loci. A lower ORABC is associated with greater control of HIV viremia.
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Figure 2. Association between ORB and timing of viral rebound. ORB represents the protective status at 
the HLA-B locus and is calculated for each individual by multiplying the OR estimate of HIV non-control 
for each of the 2 alleles carried by that individual.

DISCUSSION
In this pooled analysis of ACTG studies with ATI, we evaluated the association between HLA 
class I alleles with HIV reservoir size and post-ATI viral dynamics using a new method of assess-
ing the additive effect of alleles at multiple loci. We found that the presence of protective HLA-B 
alleles was associated with delayed viral rebound after treatment interruption that was not readily 
explained by differences in baseline reservoir size. One key immune response associated with 
control of viral replication is the HIV-1-specific CD8+ T lymphocyte responses which are mod-
ulated by the host’s HLA class I molecules [15]. The role that virus-specific T lymphocytes may 
play in the control of viral replication is suggested by the association between the appearance of 
HIV-1-specific CD8+ T lymphocytes in peripheral blood with initial decline in viremia during 
acute infection [16]. This link is further supported by the loss of the ability to control viral repli-
cation in macaques infected with simian immunodeficiency virus (SIV) once depleted of CD8+ 
lymphocytes [17]. Although the complete mechanism underlying HLA modulation of HIV 
disease progression is not well understood, class I alleles associated with the protective phenotype 
of slower disease progression strongly contribute to the total HIV-specific CD8+ T lymphocyte 
response during acute infection [18]. In this study, higher OR scores (ie, more unfavorable HLA 
alleles) were associated with a longer time receiving ART. One possible explanation is that unfa-
vorable HLA alleles may lead to more rapid disease progression and therefore to patients starting 
ART earlier. 
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To our knowledge, this is the first study demonstrating that protective HLA alleles, specifically in 
the HLA-B loci, are associated with delayed time to viral rebound, indicating the vital role that 
cellular host immunity has in preventing HIV rebound after treatment interruption. Given the 
lack of evidence for an association between HLA alleles and pre-ATI reservoir size (HIV DNA) or 
activity (CA-RNA), this effect may be mediated by the identification and control of reactivated T 
cells and viral spread after ART discontinuation. The results also suggest that boosting T-cell-me-
diated immune responses could be an important component of efforts to induce sustained ART-
free HIV remission. In the SPARTAC study, participants with unfavorable HLA alleles had higher 
HIV DNA levels prior to ART initiation, and only pre-ART levels of T-cell exhaustion predicted 
the time of viral rebound [19]. However, the SPARTAC study only evaluated participants who ini-
tiated ART during early HIV infection, and their sample size was less than half that of this study, 
limiting the authors’ ability to assess HLA-mediated effects. Despite the fact that protective class 
I HLA alleles are associated with the spontaneous control of HIV, these alleles were not found 
to be enriched in the VISCONTI cohort of post-treatment controllers [20]. One potential ex-
planation is that while the VISCONTI study limited the categorization of protective HLA alleles 
to HLA-B*27 and B*57, our analysis provided a more comprehensive and nuanced approach to 
assessing HLA-related effects. It is also possible that non-HLA-mediated immune responses are 
needed for sustained HIV remission. In summary, individuals with protective HLA-B alleles had 
delayed viral rebound after treatment interruption that was not explained by differences in base-
line reservoir size. The results indicate the vital role of cellular host immunity in preventing HIV 
rebound and the importance of taking into account the HLA status of study participants being 
evaluated in cure trials for HIV because an imbalance in HLA types between study arms may 
have an unexpected effect on the outcome.
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Supplementary Table 1. Baseline characteristics for HLA-A groups

Characteristic
HLA-A

Protective (n = 7) Neutral (n = 39) Unfavorable (n=57)
Sex, male, n (%) 7 (100%) 34 (87%) 51 (89%)
Age, median years (Q1, Q3) 38 (33, 60) 42 (36, 48) 43 (39, 50)
Race/Ethnicity, n(%)
       White 7 (100%) 24 (62%) 54 (95%)
       Black 0 (0%) 15 (38%) 3 (5%)
Nadir CD4+ cell count, median cells/µL 

(Q1, Q3)
476 (402, 587) 396 (305, 505) 422 (350, 566)

Pre-ATI CD4+ cell count, median cells/ µL 
(Q1, Q3)

905 (798, 1161)
863 (617, 

1099)
832 (681, 1010)

Pre-ART viral load, median log10 HIV RNA 
copies/mL (Q1, Q3)

4.0 (3.3, 4.7) 4.4 (3.8, 4.9) 4.4 (4.0, 4.9)

CA-DNA, median log10 copies/106 PBMCs 
(Q1, Q3)

2.3 (2.2, 2.9) 2.4 (1.9, 3.1) 2.3 (1.7, 2.9)

CA-RNA, median log10 copies/106 PBMCs 
(Q1, Q3)

2.0 (1.1, 2.6) 1.7 (1.1, 2.3) 1.8 (1.1, 2.3)

Duration of ART, median years (Q1, Q3) 3.8 (2.6, 5.3) 5.4 (3.2, 6.5) 5.4 (3.3, 7.2)
NNRTI-based ART 4 (57%) 19 (49%) 41 (72%)
Source study, n (%)
       A5024 0 (0%) 3 (8%) 4 (7%)
       A5068 0 (0%) 8 (21%) 4 (7s%)
       A5170 5 (71%) 22 (56%) 35 (61%)
       A5197 2 (29%) 6 (15%) 14 (25%)
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Supplementary Table 2. Baseline characteristics for HLA-B groups

Characteristic HLA-B
Protective (n = 22) Neutral (n = 48) Unfavorable (n = 33)

Sex, male, n (%) 19 (86%) 41 (85%) 32 (97%)
Age, median years (Q1, Q3) 42 (38, 46) 43 (38, 49) 41 (48, 53)
Race/Ethnicity, n (%)
       White 18 (82%) 43 (90%) 24 (73%)
       Black 4 (18%) 5 (10%) 9 (27%)
Nadir CD4+ cell count, median cells/µL 

(Q1, Q3)
443 (383, 536) 413 (353, 544) 449 (328, 568)

Pre-ATI CD4+ cell count, median cells/µL 
(Q1, Q3)

876 (626, 1030)
859 (688, 

1061)
800 (687, 1127)

Pre-ART viral load, median log10 HIV RNA 
copies/mL (Q1, Q3)

4.2 (3.9, 4.6) 4.3 (3.7, 4.9) 4.5 (3.8, 5.0)

CA-DNA, median log10 copies/106 PBMCs 
(Q1, Q3)

2.1 (1.7, 2.8) 2.4 (1.9, 2.9) 2.4 (1.7, 3.1)

CA-RNA, median log10 copies/106 PBMCs 
(Q1, Q3)

1.6 (1.1, 2.1) 1.8 (1.1, 2.3) 2.0 (1.1, 2.5)

Duration of ART, median years (Q1, Q3) 4.2 (2.8, 5.8) 5.4 (3.3, 6.7) 5.4 (3.3, 8.3)
NNRTI-based ART 12 (55%) 34 (71%) 18 (55%)
Source study, n (%)
       A5024 3 (14%) 3 (6%) 1 (3%)
       A5068 0 (0%) 7 (15%) 5 (15%)
       A5170 14 (64%) 29 (60%) 19 (58%)
       A5197 5 (23%) 9 (19%) 8 (24%)
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Supplementary Table 3. Baseline characteristics for HLA-C groups

Characteristic
HLA-C

Protective (n = 8) Neutral (n = 79) Unfavorable (n = 16)
Sex, male, n (%) 7 (88%) 71 (90%) 14 (88%)
Age, median years (Q1, Q3) 38 (35, 51) 43 (38, 50) 43 (40, 52)
Race/Ethnicity, n (%)
       White 5 (63%) 64 (81%) 16 (100%)
       Black 3 (37%) 15 (19%) 0 (0%)
Nadir CD4+ cell count, median cells/µL 

(Q1, Q3)
451 (402, 510) 413 (325, 582) 422 (363, 524)

Pre-ATI CD4+ cell count, median cells/ µL 
(Q1, Q3)

799 (601, 1310) 852 (653, 1023) 852 (764, 1186)

Pre-ART viral load, median log10 HIV RNA 
copies/mL (Q1, Q3)

4.5 (3.8, 5.3) 4.3 (3.8, 4.7) 4.9 (4.0, 5.5)

CA-DNA, median log10 copies/106 PBMCs 
(Q1, Q3)

2.7 (1.7, 3.3) 2.3 (1.8, 3.1) 2.5 (1.7, 2.7)

CA-RNA, median log10 copies/106 PBMCs 
(Q1, Q3)

1.8 (1.2, 2.6) 1.8 (1.1, 2.3) 1.8 (1.1, 2.3)

Duration of ART, median years (Q1, Q3) 2.5 (1.6, 4.3) 5.3 (3.4, 6.7) 5.8 (3.5, 7.6)
NNRTI-based ART 5 (63%) 50 (63%) 9 (56%)
Source study, n (%)
       A5024 1(13%) 6 (8%) 0 (0%)
       A5068 0 (0%) 9 (11%) 3 (19%)
       A5170 6 (74%) 46 (58%) 10 (63%)
       A5197 1 (13%) 18 (23%) 3 (19%)
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Supplementary Table 4. Effect of individual class I alleles on viral control (controllers vs 
non-controllers) based on a logistic regression model with stepwise selection including all 
HLA class I alleles with phenotypic frequencies of >2% (Table S5 in [7]).

White Black
Allele P OR 95% CI Allele P OR 95% CI

A*01:01 2E-11 2.3 1.8-2.9 A*23:01 3E-04 1.9 1.3-2.7
A*02:01 4E-05 1.5 1.2-1.8 A*36:01 4E-04 4.3 1.9-9.8
A*25:01 1E-03 0.5 0.3-0.8 A*03:01 4E-02 0.7 0.5-1.0
A*31:01 5E-03 0.6 0.4-0.9 B*57:03 2E-22 0.1 0.1-0.2
A*68:02 3E-02 0.5 0.3-0.9 B*45:01 8E-05 3.3 1.8-5.9
B*57:01 3E-42 0.1 0.1-0.2 B*35:01 3E-04 2.2 1.4-3.3
B*27:05 3E-13 0.3 0.2-0.4 B*15:10 1E-03 2.6 1.5-4.7
B*07:02 2E-07 2.0 1.5-2.6 B*81:01 2E-03 0.4 0.2-0.7
B*52:01 4E-06 0.3 0.2-0.5 B*58:02 3E-03 2.5 1.4-4.5
B*14:02 2E-05 0.5 0.3-0.7 B*18:01 5E-03 2.5 1.3-4.8
B*13:02 3E-05 0.4 0.3-0.6 B*07:02 1E-02 1.7 1.1-2.5
B*40:01 4E-04 2.0 1.4-2.9 B*14:02 4E-02 0.6 0.3-1.0
B*38:01 5E-04 2.9 1.6-5.2 C*12:03 8E-05 0.3 0.2-0.6
B*18:01 7E-04 2.0 1.3-3.0 C*08:04 4E-03 0.3 0.1-0.7
B*40:02 4E-03 0.5 0.3-0.8 C*05:01 2E-02 0.5 0.3-0.9
B*58:01 2E-02 0.5 0.3-0.9
B*35:02 3E-02 2.9 1.1-7.9
B*55:01 4E-02 2.1 1.0-4.4
C*14:02 1E-04 0.4 0.2-0.6
C*04:01 1E-03 1.5 1.2-2.0
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Supplementary Figure 1. Univariate analysis of associations at HLA-B locus. Proportions of partici-
pants in HLA-B groups grouped based on their time to viral rebound to ≥ 200 HIV RNA copies/mL.
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